Physics 124: Lecture 10 a

Adapted from T. Murphy’s slides

Arduino Makes it Look Easy

* High-level functions remove user/programmer from
processor details

— on the plus side, this means you can actually get things
done without a steep learning curve

— on the down side, you don’t understand fundamentally
what your actions are doing...

— ...or how to take advantage of processor capabilities that
are not wrapped into high-level functions

* So today, we’ll look a bit into what Arduino is actually
doing—to a limited extent!

Where Do the Monsters Lurk?

 What I will call the root directory is at:

— On a Mac:

» /Applications/Arduino.app/Contents/Resources/Java/hardware/ar
duino/

— On Windows:

e Arduino-Install-Directory/Hardware/Arduino/

— On Linux:
 (likely) /usr/share/arduino/
 also may check /usr/local/

e ||| describe contents as found on the Mac
— it’s what | have
— hopefully is reasonably universal

Contents of root directory

* On Tom’s Mac, the aforementioned directory has:

boards.txt cores/ programmers.txt
bootloaders/ firmwares/ = variants/ _ .
— boards.txt has specific info for the various Arduino
boards

- cores/ has only a directory called arduino/, which
we will investigate later

e bootloaders/ has
atmega/ atmega8/ bt/ caterina/ lilypad/ optiboot/ stk500v2/

e variants/ has

eightanaloginputs/ leonardo/ mega/ standard/

— each of which contains a single file: pins arduino.h
— maps pinouts of specific devices

File Types in “Standard” C Programming

Source Code
— the stuff you type in: has . c extension, or . cpp for C++

Compiled “Executable”

— the ready-to-run product: usually no extension in
Unix/Mac, .exe in DOS

Header Files

— contain definitions of useful functions, constants: . h
extension

Object Files
— a pre-linked compiled tidbit: .o in Unix, .obj in DOS
— only if you’re building in pieces and linking later

In root/cores/arduino/

 Here’s what | show, broken out by extension
— | have 36 files total in this directory, all .c, .cpp, or .h

* First, 6 C files:

mojo:arduino$ wc *.cC

298 1116 8198 WInterrupts.c
324 1468 9394 wiring.c

282 1133 7374 wiring analog.c
178 668 4931 wiring digital.c
69 416 2643 wiring pulse.c
55 236 1601 wiring shift.c

— note: numbers apply to vers. 1.0.1: minor changes w/ time

e The wc function means word count

— returns number of lines, # of words, # of characters for
each file

Phys 124: Lecture 10

Directory, continued

* Now, 12 C++ files:

mojo:arduino$ wc *.cpp

233 896 6718 CDC.cpp

519 1677 13772 HID.cpp

428 1442 11400 HardwareSerial.cpp
56 115 1152 IPAddress.cpp

263 798 5216 Print.cpp

270 1137 7277 Stream.cpp
601 1783 14311 Tone.cpp

672 1734 13134 USBCore.cpp
59 265 1649 WMath.cpp

645 1923 14212 WString.cpp
20 22 202 main.cpp

18 41 325 new.cpp

Note in particular main.cpp: 20 lines of fun
— we'll look at in a bit

Phys 124: Lecture 10

Header files
* Finally, the 18 header files

mojo:arduino$ wc *.h

215 677 5690 Arduino.h
26 97 697 Client.h
81 289 2363 HardwareSerial.h
76 419 2978 IPAddress.h
23 42 401 Platform.h
78 328 2462 Print.h
40 207 1332 Printable.h
9 17 111 Server.h
96 584 4005 Stream.h
194 478 5224 USBAPI.h
302 846 7855 USBCore.h
63 236 1872 USBDesc.h
88 691 4180 Udp.h
167 699 4576 WCharacter.h
205 1151 8470 WString.h
515 1535 10379 binary.h
22 62 562 new.h
69 230 1752 wiring private.h

e We'll look at Arduino.h next

Phys 124: Lecture 10

Arduino.h

* Contains function prototypes, definition of constants,
some useful algorithms

* Excerpts follow

#include <stdlib.h>
#include <string.h>
#include <math.h>

#include <avr/pgmspace.h>
#include <avr/io.h>
#include <avr/interrupt.h>

#include "binary.h”

* These are standard C libraries that are being pulled in

— note in particular that the math library is automatically
used

Arduino.h, continued

* Now we have some constants defined
— recall, #def ine acts as text replacement

#define
#define

#define
#define
#define

#define
#define

#define
#define
#define
#define
#define

HIGH 0xl1
LOW 0x0

INPUT 0x0
OUTPUT O0x1
INPUT PULLUP 0x2

true 0xl1
false 0x0

PI 3.1415926535897932384626433832795
HALF PI 1.5707963267948966192313216916398

TWO PI 6.283185307179586476925286766559
DEG TO RAD 0.017453292519943295769236907684886
RAD TO DEG 57.295779513082320876798154814105

— |In some cases, to absurd precision!

Phys 124: Lecture 10

10

Arduino.h, continued

e The #define construct can also create useful functions

#define min(a,b) ((a)<(b)?(a):(b))

#define max(a,b) ((a)>(b)?(a):(b))

#define abs(x) ((x)>0?2(x):-(X))

#define constrain(amt,lo,hi) ((amt)<(lo)?(lo):((amt)>(hi)?(hi):(amt)))
#define round(x) ((x)>=0?(long) ((x)+0.5):(long)((x)-0.5))
#define radians(deg) ((deg)*DEG TO RAD)

#define degrees(rad) ((rad)*RAD TO DEG)

#define sqg(x) ((X)* (X))

#define lowByte(w) ((uint8 t) ((w) & O0xff))

#define highByte(w) ((uint8 t) ((w) >> 8))

#define bitRead(value, bit) (((value) >> (bit)) & 0x01)

#define bitSet(value, bit) ((value) |= (1UL << (bit)))

#define bitClear(value, bit) ((value) &= ~(1lUL << (bit)))

#define bitWrite(val, bit, bval) (bval ? bitSet(val, bit) : bitClear
(val, bit))

 Some labels shortened to fit on this slide (hi, lo, etc.)

Phys 124: Lecture 10 11

Arduino.h, continued
e Also included are function prototypes

— so that we know what types are expected in function calls
typedef uint8 t byte; // 8-bit integer, same as char

void pinMode(uint8 t, uint8 t);

void digitalWrite(uint8 t, uint8 t);
int digitalRead(uint8 t);

int analogRead(uint8 t);

void analogReference(uint8 t mode);
void analogWrite(uint8 t, int);

unsigned long millis(void);
unsigned long micros(void);
void delay(unsigned long);

void setup(void);
void loop(void);
long map(long, long, long, long, long);

e This is just an excerpt, for familiar functions

Phys 124: Lecture 10

12

root/variants/standard/pins_arduino.h

* maps pins to functions—excerpts:

#define NUM DIGITAL PINS 20
#define NUM ANALOG INPUTS 6
#define analogInputToDigitalPin(p) ((p < 6) ? (p) + 14 : -1)

// ATMEL ATMEGA8 & 168 / ARDUINO

//

// +-\/-+

// PC6 1| |28 PC5 (AI 5)

// (D 0) PDO 2| |27 PC4 (AI 4)

// (D 1) PD1 3| |26 PC3 (AI 3)

// (D 2) PD2 4| |25 PC2 (AI 2)

// PWM+ (D 3) PD3 5| |24 PC1l (AI 1)

// (D 4) PD4 6| |23 PCO (AI 0)

// vcc 7| |22 GND

// GND 8| |21 AREF

// PB6 9| |20 AvcCC

// PB7 10| |19 PB5 (D 13)

// PWM+ (D 5) PD5 11| |18 PB4 (D 12)

// PWM+ (D 6) PD6 12| |17 PB3 (D 11) PWM
// (D 7) PD7 13| |16 PB2 (D 10) PWM
// (D 8) PBO 14| |15 PB1 (D 9) PWM
// S

Phys 124: Lecture 10

root/cores/arduino/main.cpp

e Simple: initialize, run your setup, start infinite loop
and run your loop, keeping a lookout for serial comm

#include <Arduino.h>

int main(void)

{

init();

#1if defined(USBCON)
USBDevice.attach();

#endif
setup();
for (;7) {
loop();
i1f (serialEventRun) serialEventRun();
}

return 0;

 Examples for Uno and Nano

uno.
.upload.protocol=arduino
uno.
.upload.speed=115200
uno.
.bootloader.high fuses=0xde

uno

uno

uno

uno.
.bootloader.path=optiboot

uno

uno.

uno.
uno.
uno.
uno.
uno.
uno.

Finally, root/boards.txt

name=Arduino Uno
upload.maximum size=32256
bootloader.low fuses=0xff
bootloader.extended fuses=0x05

bootloader.file=

optiboot atmega328.hex
bootloader.unlock bits=0x3F
bootloader.lock bits=0x0F
build.mcu=atmega328p
build.f cpu=16000000L
build.core=arduino
build.variant=standard

Note core, variant
— and CPU speed 16 MHz

nano328.name=Arduino Nano w/ ATmega328

nano328.upload.protocol=arduino
nano328.upload.maximum size=30720
nano328.upload.speed=57600

nano328.bootloader.low fuses=0xFF
nano328.bootloader.high fuses=0xDA
nano328.bootloader.extended fuses=0x05
nano328.bootloader.path=atmega
nano328.bootloader.file=
ATmegaBOOT 168 atmega328.hex
nano328.bootloader.unlock bits=0x3F
nano328.bootloader.lock bits=0x0F

nano328.build.mcu=atmega328p
nano328.build.f cpu=16000000L
nano328.build.core=arduino
nano328.build.variant=eightanaloginputs

Phys 124: Lecture 10 15

But the Rabbit Hole Goes Much Farther

 Underneath it all is a microprocessor with staggering
complexity
— full datasheet (avail via course website) is 567 pages
— summary datasheet (strongly encourage perusal) is 35 pp.

* Note in particular in the summary datasheet:
— p. 2 the Uno uses the 28-pin PDIP (upper right)
— read the port descriptions on pp. 3-4, even if foreign
— block diagram p. 5
— register map pp. 7-12
— assembly instruction set pp. 13-15
— can safely ignore pp. 16-35 ;-)

RESET

XTAL[1..2]

|
Watchdog |
Timer » Power debugWIRE I
B Supervision ¥ :
Waichdog | | Poi;é 2270 & PROGAAM |
Oscillator LOGIC :
. |
d |
Oscillator |
| Circuitss Flash SRAM |
i 1T 1L |
Generation |
|
|
AVR ce :
EEPROM !
) ' '
l
T— |
1 f I Y| —————— AREF
|
L] [|'
8bit T/C 0 16bIt T/C 1 ADConv. |e !
4 _,_4 T A |
|
@ Analog Internal |
»| 8bitT/IC2 <] 6y | !
|
2 Comp. Bandgap |
= |
|
|
USART 0 SPI T™WI |
|
A A A \ A \ |
|
y ¥ " N |
) |
h A v |
YVYY L A y Y ¥ !
PORT D (8) PORT B (8) PORT C (7) |
‘ ‘ |
|
______________________________________ . J
" Y Y
PD{0.7] PE[0..7] PC[0..6] ADCIB..7]

Phys 124: Lecture 10

Physics 124: Lecture 10 b

loT

* Internetworking of physical devices
e Applications categories:

Tracking
behavior

Monitoring the behavior
of persons, things, or
data through space and
time.

Examples:
Presence-based
advertising and
payments based on
locations of consumers

Inventory and supply
chain monitoring and
management

Enhanced
situational
awareness

Achieving real-time
awareness of physical
environment.

Example:

Sniper detection using
direction of sound to
locate shooters

Sensor-driven
decision analytics

Assisting human
decision making through
deep analysis and data
visualization

Examples:

Qil field site planning
with 3D visualization and
simulation

Continuous monitoring
of chronic diseases to
help doctors determine
best treatments

Process
optimization

Automated control of
closed (self-contained)
systems

Examples:

Maximization of lime kiln
throughput via wireless
Sensors

Continuous, precise
adjustments in
manufacturing lines

INTERNET
OF THINGS

Optimized resource
consumption

Control of consumption
to optimize resource use
across network

Examples:

Smart meters and
energy grids that match
loads and generation
capacity in order to
lower costs

Data-center manage-
ment to optimize energy,
storage, and processor
utilization

Complex
autonomous
systems

Automated control in
open environments with
great uncertainty

Examples:

Collision avoidance
systems to sense
objects and automati-
cally apply brake

Clean up of hazardous
materials through the
use of swarms of robots

* All common to academic and industrial research, e.g.,
measurement and control of complex experiments.

Phys 124: Lecture 10

19

in advanced economies.

Share of economic impact, 2025, %

M Advanced economies

Economic impact

The economic impact of the Internet of Things will be greater 10T’s interoperability could deliver over $4 trillion out of

M Developing economies

an $11.1 trillion economic impact.

The Internet of Things (IoT): examples
of how interoperability enhances value

Potential economic impact,’
2025, $ trillion

Settings Reasons for varying impact
Healthcare spending in advanced
Human 89 1 economies is twice that of developing
economies
Higher penetration of the Internet of
Homes 77 23 Things (loT) in advanced economies;
higher value of time saved
Impact of loT more valuable in
Offices 75 25 advanced economies because of
higher costs and wages
Retail Higher adoption of loT

environments El

—
©

2 in advanced economies

Higher costs in advanced

Vehicles 63 37 e

Cities 62 38 More autonomous ve.hlcles
in advanced economies

e, 57 43 !_arger investments in automation
in advanced economies

Outside 56 44 Transpgr‘tatlon/shlpplng spelndmg
higher in advanced economies

. Higher adoption of loT

prerigenss e we in advanced economies

ngrall 62 38

estimate

Factories—data from different types of
equipment used to improve line efficiency

Cities—video, cell-phone data, and sensors
used to monitor traffic and optimize flow

Retail —payment and item-detection systems
linked for automatic checkout

Work sites—worker- and machinery-location
data used to avoid accidents

Vehicles—equipment-usage data used in
presales analytics and insurance underwriting

Agriculture—multiple sensor systems used to
improve farm management

Outside—inventory levels monitored at
various stages of the supply chain

Homes—data from household energy systems
used to track time usage

Offices—data from building systems and
other buildings used to improve security

0.7

0.7

o
(3]

0.4

Mo

<0.1

1.3

McKinsey&Company | McKinsey Global Institute analysis

Phys 124: Lecture 10

"Includes sized applications only; includes consumer surplus.

McKinsey&Company | Source: Expert interviews; McKinsey Global Institute analysis

20

Arduino was a good place to start

Arduino specs; 16MHz Atmega328 microcontroller
* 32KB flash, 2KB SRAM

» Digital I/O: 14 pins, Analog pins: 6

* But there are more powerful and cheaper devices
better suited for loT, for example:

Particle Photon ($19) ESP8266 WiFi (S10-516) Rasberry Pl Zero (S5)

X1 XdG# +# O# Z# ST nEOQT

oooooooooog

Ogg

Images from http://adafruit.com

Phys 124: Lecture 10 21

Particle Photon

* 120MHz ARM processor
 1MB flash, 128KB RAM
* WiFi 802.11b/g/n
 1/0:

Peripheral Type Qty Input(l) / Output(0) FTM / 3v3L2]

Digital 18 1/0 FT/3V3

Analog (ADC) 8 | 3V3

Analog (DAC) 2 O 3V3

SPI 2 1/O 3V3

12S 1 1/O 3V3

12C 1 1/O FT

setup() { CAN 1 I/0 FT
.publish("my-event”,"The internet just got s ‘); USB . 1/O 3v3

PWM 93 o 3v3

https://docs.particle.io/datasheets/photon-datasheet/

Phys 124: Lecture 10

ESP8266 WiFi

* Arduino IDE programmable
* 26-52MHz processor
 1MB flash, 36KB RAM

e WiFi 802.11b/g/n

« 16 GPIO

gspe2soMoD J|K| —.) e .
'VENDOR - Al-THINKER R e 1 ADC

R o 2ae [e oSy U It can run MicroPython!

PA +256dBm. §
7 802.11b/g/n §

RTC + SD add on:

Phys 124: Lecture 10 23

Raspberry Pi Zero

SCL12C

K Power
. /SDA 12¢

Power
MOSI
MISO

SCLK

12C ID EEPROM

https://leanpub.com/site _images/jerpi/rpiZ-08.png

3V3
GPIO2
GPIO3
GPIO4
Ground
GPIO17
GPI027
GPIO22
3V3
GPIO10
GPIO9
GPIO11
Ground
ID_SD
GPIO5
GPIO6
GPIO13
GPIO19
GPIO26

Ground

g

5V

5V
Ground
GPIO14
GPIO15
GPIO18
Ground
GPI023
GPI024
Ground
GPI025
GPIO8
GPIO7
ID_SC
Ground
GPIO12
Ground
GPIO16
GPI020
GPIO21

1+
1+

g

Power

Power

UARTO_TXD
UARTO_RXD

PCM_CLK

CEO_N
CELN

12C ID EEPROM

Phys 124: Lecture 10

1GHz ARM processor

SD card holder

Video+Audio out

USB port OTG

12C, SPI, lots of GPIO

No WiFi/eth

Cons: no programmable
real time unit

24

Announcements

* Project Proposals due Friday Nov. 3 by 11:59pm

e Week 4/5 lab:

— could work on light-tracker (due in two weeks, 11/6, 11/7)
— could work on proposals with “consultants” at hand

e After midterm, we’ll begin project mode

