
Physics	124:	Lecture	10	a

Under	the	Arduino Hood

Adapted	from	T.	Murphy’s	slides

Arduino Makes	it	Look	Easy	

• High-level	functions	remove	user/programmer	from	
processor	details
– on	the	plus	side,	this	means	you	can	actually	get	things	
done	without	a	steep	learning	curve

– on	the	down	side,	you	don’t	understand	fundamentally	
what	your	actions	are	doing…

– …or	how	to	take	advantage	of	processor	capabilities	that	
are	not	wrapped	into	high-level	functions

• So	today,	we’ll	look	a	bit	into	what	Arduino is	actually
doing—to	a	limited	extent!

2Phys	124:	Lecture	10

Where	Do	the	Monsters	Lurk?

• What	I	will	call	the	root	directory	is	at:
– On	a	Mac:

• /Applications/Arduino.app/Contents/Resources/Java/hardware/ar
duino/

– On	Windows:
• Arduino-Install-Directory/Hardware/Arduino/

– On	Linux:
• (likely)	/usr/share/arduino/
• also	may	check	/usr/local/

• I’ll	describe	contents	as	found	on	the	Mac
– it’s	what	I	have
– hopefully	is	reasonably	universal

Phys	124:	Lecture	10 3

Contents	of	root	directory
• On	Tom’s	Mac,	the	aforementioned	directory	has:

– boards.txt has	specific	info	for	the	various	Arduino
boards

• cores/	has	only	a	directory	called	arduino/,	which	
we	will	investigate	later

• bootloaders/	has

• variants/	has

– each	of	which	contains	a	single	file:	pins_arduino.h
– maps	pinouts of	specific	devices

Phys	124:	Lecture	10 4

boards.txt cores/ programmers.txt
bootloaders/ firmwares/ variants/

atmega/ atmega8/ bt/ caterina/ lilypad/ optiboot/ stk500v2/

eightanaloginputs/ leonardo/ mega/ standard/

Phys	124:	Lecture	10 5

File	Types	in	“Standard”	C	Programming

• Source	Code
– the	stuff	you	type	in:	has	.c extension,	or	.cpp for	C++

• Compiled	“Executable”
– the	ready-to-run	product:	usually	no	extension	in	
Unix/Mac,	.exe in	DOS

• Header	Files
– contain	definitions	of	useful	functions,	constants:	.h
extension

• Object	Files
– a	pre-linked	compiled	tidbit:	.o in	Unix,	.obj in	DOS
– only	if	you’re	building	in	pieces	and	linking	later

In	root/cores/arduino/

• Here’s	what	I	show,	broken	out	by	extension
– I	have	36	files	total	in	this	directory,	all	.c,	.cpp,	or	.h

• First,	6	C	files:

– note:	numbers	apply	to	vers.	1.0.1:	minor	changes	w/	time

• The	wc function	means	word	count
– returns	number	of	lines,	#	of	words,	#	of	characters	for	
each	file

Phys	124:	Lecture	10 6

mojo:arduino$ wc *.c
298 1116 8198 WInterrupts.c
324 1468 9394 wiring.c
282 1133 7374 wiring_analog.c
178 668 4931 wiring_digital.c
69 416 2643 wiring_pulse.c
55 236 1601 wiring_shift.c

Directory,	continued

• Now,	12	C++	files:

• Note	in	particular	main.cpp:	20	lines	of	fun
– we’ll	look	at	in	a	bit

Phys	124:	Lecture	10 7

mojo:arduino$ wc *.cpp
233 896 6718 CDC.cpp
519 1677 13772 HID.cpp
428 1442 11400 HardwareSerial.cpp
56 115 1152 IPAddress.cpp
263 798 5216 Print.cpp
270 1137 7277 Stream.cpp
601 1783 14311 Tone.cpp
672 1734 13134 USBCore.cpp
59 265 1649 WMath.cpp
645 1923 14212 WString.cpp
20 22 202 main.cpp
18 41 325 new.cpp

Header	files
• Finally,	the	18	header	files

• We’ll	look	at	Arduino.h next
Phys	124:	Lecture	10 8

mojo:arduino$ wc *.h
215 677 5690 Arduino.h
26 97 697 Client.h
81 289 2363 HardwareSerial.h
76 419 2978 IPAddress.h
23 42 401 Platform.h
78 328 2462 Print.h
40 207 1332 Printable.h
9 17 111 Server.h

96 584 4005 Stream.h
194 478 5224 USBAPI.h
302 846 7855 USBCore.h
63 236 1872 USBDesc.h
88 691 4180 Udp.h

167 699 4576 WCharacter.h
205 1151 8470 WString.h
515 1535 10379 binary.h
22 62 562 new.h
69 230 1752 wiring_private.h

Arduino.h

• Contains	function	prototypes,	definition	of	constants,	
some	useful	algorithms

• Excerpts	follow

• These	are	standard	C	libraries	that	are	being	pulled	in
– note	in	particular	that	the	math	library	is	automatically	
used

Phys	124:	Lecture	10 9

#include <stdlib.h>
#include <string.h>
#include <math.h>

#include <avr/pgmspace.h>
#include <avr/io.h>
#include <avr/interrupt.h>

#include "binary.h”

Arduino.h,	continued
• Now	we	have	some	constants	defined	
– recall,	#define acts	as	text	replacement

– In	some	cases,	to	absurd	precision!

Phys	124:	Lecture	10 10

#define HIGH 0x1
#define LOW 0x0

#define INPUT 0x0
#define OUTPUT 0x1
#define INPUT_PULLUP 0x2

#define true 0x1
#define false 0x0

#define PI 3.1415926535897932384626433832795
#define HALF_PI 1.5707963267948966192313216916398
#define TWO_PI 6.283185307179586476925286766559
#define DEG_TO_RAD 0.017453292519943295769236907684886
#define RAD_TO_DEG 57.295779513082320876798154814105

Arduino.h,	continued
• The	#define construct	can	also	create	useful	functions

• Some	labels	shortened	to	fit	on	this	slide	(hi,	lo,	etc.)

Phys	124:	Lecture	10 11

#define min(a,b) ((a)<(b)?(a):(b))
#define max(a,b) ((a)>(b)?(a):(b))
#define abs(x) ((x)>0?(x):-(x))
#define constrain(amt,lo,hi) ((amt)<(lo)?(lo):((amt)>(hi)?(hi):(amt)))
#define round(x) ((x)>=0?(long)((x)+0.5):(long)((x)-0.5))
#define radians(deg) ((deg)*DEG_TO_RAD)
#define degrees(rad) ((rad)*RAD_TO_DEG)
#define sq(x) ((x)*(x))

#define lowByte(w) ((uint8_t) ((w) & 0xff))
#define highByte(w) ((uint8_t) ((w) >> 8))

#define bitRead(value, bit) (((value) >> (bit)) & 0x01)
#define bitSet(value, bit) ((value) |= (1UL << (bit)))
#define bitClear(value, bit) ((value) &= ~(1UL << (bit)))
#define bitWrite(val, bit, bval) (bval ? bitSet(val, bit) : bitClear
(val, bit))

Arduino.h,	continued
• Also	included	are	function	prototypes
– so	that	we	know	what	types	are	expected	in	function	calls

• This	is	just	an	excerpt,	for	familiar	functions
Phys	124:	Lecture	10 12

typedef uint8_t byte; // 8-bit integer, same as char

void pinMode(uint8_t, uint8_t);
void digitalWrite(uint8_t, uint8_t);
int digitalRead(uint8_t);
int analogRead(uint8_t);
void analogReference(uint8_t mode);
void analogWrite(uint8_t, int);

unsigned long millis(void);
unsigned long micros(void);
void delay(unsigned long);

void setup(void);
void loop(void);
long map(long, long, long, long, long);

root/variants/standard/pins_arduino.h
• maps	pins	to	functions—excerpts:

Phys	124:	Lecture	10 13

#define NUM_DIGITAL_PINS 20
#define NUM_ANALOG_INPUTS 6
#define analogInputToDigitalPin(p) ((p < 6) ? (p) + 14 : -1)

// ATMEL ATMEGA8 & 168 / ARDUINO
//
// +-\/-+
// PC6 1| |28 PC5 (AI 5)
// (D 0) PD0 2| |27 PC4 (AI 4)
// (D 1) PD1 3| |26 PC3 (AI 3)
// (D 2) PD2 4| |25 PC2 (AI 2)
// PWM+ (D 3) PD3 5| |24 PC1 (AI 1)
// (D 4) PD4 6| |23 PC0 (AI 0)
// VCC 7| |22 GND
// GND 8| |21 AREF
// PB6 9| |20 AVCC
// PB7 10| |19 PB5 (D 13)
// PWM+ (D 5) PD5 11| |18 PB4 (D 12)
// PWM+ (D 6) PD6 12| |17 PB3 (D 11) PWM
// (D 7) PD7 13| |16 PB2 (D 10) PWM
// (D 8) PB0 14| |15 PB1 (D 9) PWM
// +----+

root/cores/arduino/main.cpp
• Simple:	initialize,	run	your	setup,	start	infinite	loop	
and	run	your	loop,	keeping	a	lookout	for	serial	comm

Phys	124:	Lecture	10 14

#include <Arduino.h>

int main(void)
{

init();

#if defined(USBCON)
USBDevice.attach();

#endif

setup();

for (;;) {
loop();
if (serialEventRun) serialEventRun();

}

return 0;
}

Finally,	root/boards.txt
• Examples	for	Uno	and	Nano

• Note	core,	variant
– and	CPU	speed	16	MHz

Phys	124:	Lecture	10 15

uno.name=Arduino Uno
uno.upload.protocol=arduino
uno.upload.maximum_size=32256
uno.upload.speed=115200
uno.bootloader.low_fuses=0xff
uno.bootloader.high_fuses=0xde
uno.bootloader.extended_fuses=0x05
uno.bootloader.path=optiboot
uno.bootloader.file=

optiboot_atmega328.hex
uno.bootloader.unlock_bits=0x3F
uno.bootloader.lock_bits=0x0F
uno.build.mcu=atmega328p
uno.build.f_cpu=16000000L
uno.build.core=arduino
uno.build.variant=standard

nano328.name=Arduino Nano w/ ATmega328

nano328.upload.protocol=arduino
nano328.upload.maximum_size=30720
nano328.upload.speed=57600

nano328.bootloader.low_fuses=0xFF
nano328.bootloader.high_fuses=0xDA
nano328.bootloader.extended_fuses=0x05
nano328.bootloader.path=atmega
nano328.bootloader.file=

ATmegaBOOT_168_atmega328.hex
nano328.bootloader.unlock_bits=0x3F
nano328.bootloader.lock_bits=0x0F

nano328.build.mcu=atmega328p
nano328.build.f_cpu=16000000L
nano328.build.core=arduino
nano328.build.variant=eightanaloginputs

But	the	Rabbit	Hole	Goes	Much	Farther

• Underneath	it	all	is	a	microprocessor	with	staggering	
complexity
– full	datasheet	(avail	via	course	website)	is	567	pages
– summary	datasheet	(strongly	encourage	perusal)	is	35	pp.

• Note	in	particular	in	the	summary	datasheet:
– p.	2	the	Uno	uses	the	28-pin	PDIP	(upper	right)
– read	the	port	descriptions	on	pp.	3−4,	even	if	foreign
– block	diagram	p.	5
– register	map	pp.	7−12
– assembly	instruction	set	pp.	13−15
– can	safely	ignore	pp.	16−35	;-)

Phys	124:	Lecture	10 16

Phys	124:	Lecture	10 17

Physics	124:	Lecture	10	b

Internet	of	Things	(IoT)

Altera.com

• Internetworking	of	physical	devices
• Applications	categories:

• All	common	to	academic	and	industrial	research,	e.g.,	
measurement	and	control	of	complex	experiments.

IoT

Phys	124:	Lecture	10 19

Economic	impact

Phys	124:	Lecture	10 20

Arduino	was	a	good	place	to	start

• But	there	are	more	powerful	and	cheaper	devices	
better	suited	for	IoT,	for	example:

Phys	124:	Lecture	10 21

Particle	Photon	($19) ESP8266	WiFi ($10-$16) Rasberry PI	Zero	($5)

Images	from	http://adafruit.com

• 16MHz	Atmega328	microcontroller
• 32KB	flash,	2KB	SRAM
• Digital	I/O:	14	pins,	Analog	pins:	6	

Arduino	specs:

Particle	Photon

Phys	124:	Lecture	10 22

• 120MHz	ARM	processor
• 1MB	flash,	128KB	RAM
• WiFi 802.11b/g/n
• I/O:

https://docs.particle.io/datasheets/photon-datasheet/

ESP8266	WiFi

Phys	124:	Lecture	10 23

• Arduino	IDE	programmable
• 26-52MHz	processor
• 1MB	flash,	36KB	RAM
• WiFi 802.11b/g/n
• 16	GPIO
• 1	ADC
It	can	run	MicroPython!	

RTC	+	SD	add	on:

Raspberry	Pi	Zero

Phys	124:	Lecture	10 24

• 1GHz	ARM	processor
• SD	card	holder
• Video+Audio out
• USB	port	OTG
• I2C,	SPI,	lots	of	GPIO
• No	WiFi/eth
• Cons:	no	programmable

real	time	unit

https://leanpub.com/site_images/jerpi/rpiZ-08.png

Announcements

• Project	Proposals	due	Friday	Nov.	3	by	11:59pm

• Week	4/5	lab:
– could	work	on	light-tracker	(due	in	two	weeks,	11/6,	11/7)
– could	work	on	proposals	with	“consultants”	at	hand

• After	midterm,	we’ll	begin	project	mode

Phys	124:	Lecture	9 25

