
Physics	124:	Lecture	1

Course	Structure
Crash	Course	for	Arduino

Crash	Course	in	C
adapted	from	T.	Murphy’s	 slides



Course	Structure
• MWF	Lecture->MW??	at	least	for	first	5	weeks

– 4%	of	course	grade	on	participation/attendance	(down	from	7%)

• Structured	Labs	first	4	weeks	(building	blocks)
– demonstrated	performance	is	36%	of	grade	(9%	each)
– must	adhere	to	due	dates	to	prevent	falling	behind

• Midterm	to	demonstrate	simple	coding,	10%	of	grade
• Creative	project	second	half	of	quarter,	50%	of	grade!

– final	demonstration	Friday	March	24	with	spectators
• Work	in	teams	of	2
• Primary	Lab	periods:	M/T	2−6

– at	least	2/3	of	“help”	will	be	on	hand
– will	have	access	to	lab	space	24/7

• 2	TAs:
– Darius	Choksyand	Rudy	Pei,	extensive	research	experience

2Phys	124:	Lecture	1



Project	Rubric
• Three	principal	ingredients	(a	feedback	loop)
– Measure/Sense/Perceive

• the	most	physics-related	component
– Process/Calculate/Think

• usually	via	microcontroller
– Act/React/Do

• motors,	lights,	sound,	display

• Examples	from	past	(inadequately	small	sample)
– robotic	hand	moving	as	real	hand	via	Kinect
– control	type	car	parallel	parks	itself
– automatic	shifting	on	bike
– rotating	LED	sphere	changes	color/intensity	to	music
– see	for	more

Phys	124:	Lecture	1 3



Why	is	this	a	Physics	Course?

• What	about	this	is	physics?		Why	do	we	bother?
• True	that	this	is	not	front/center	in	physics	research
• BUT…
– has	been	useful	in	research	(mine	and	former	advisors)
– learn	about	sensors
– proficiency	with	a	tool	that	can	help	control	experiments
– learn	some	coding	in	C	(well-used	language	in	physics)
– more	familiar	with	practical	electronics
– learn	team	dynamics/communication
– deadlines
– gain	confidence	in	ability	to	do	something	unique

• Goal	is	fun	enough	to	motivate	real	investment
– a	necessary	ingredient	to	real learning

Phys	124:	Lecture	1 4



Arduino:	This	is	our	Brain	in	Phys124

• http://arduino.cc
• Packaged	Microcontroller	(ATMega 328)

– lots	of	varieties;	we’ll	primarily	use	Uno	and	Nano
– USB	interface;	breakout	to	pins	for	easy	connections
– Cross-platform,	Java-based	IDE,	C-based	language
– Provides	higher-level	interface	to	guts	of	device

Phys	124:	Lecture	1 5

Arduino Uno Arduino Nano



Arduino Core	Capabilities
• Arduinomakes	it	easy	to:
– have	digital	input/output	(I/O)	(14	channels	on	Uno)
– analog	input	(6	channels	on	Uno;	8	on	Nano)
– “analog”	(PWM)	output	(6	of	the	digital	channels)
– communicate	data	via	serial	(over	USB	makes	easy)

• Libraries	available	for:
– motor	control;	LCD	display;	ethernet;	SPI;	serial;	SD	cards,	
and	lots	more

• “Shields”	for	hardware	augmentation
– stepper	motor	drivers
– LCD	display
– GPS	receiver
– bluetooth,	SD	card,	ethernet,	wireless,	and	lots	more

Phys	124:	Lecture	1 6



Why	Arduino?
• Popular	in	labs	2005-2012,	has	key	elements
• Arduino	is	for	all	platforms	Mac/Linux/Windows
• Arduino	is	cheap	(<=$16 vs	RPi3	$40,	BBB	$55,	FPGA	$150)

– so	students	can	afford	to	play	on	their	own	(encouraged!)

• Arduino programming	usefully	transfers	to	research
– C

• Intermediate	high-level	functions	mean	less	time	at	
register/bit	level
– more	time	to	learn	about	sensors,	put	amazing	projects	
together,	rather	than	dwell	on	computer	engineering

• low-level	understanding	is	useful

Phys	124:	Lecture	1 7



What’s	popular	in	university	labs	nowadays?

• Since	2013,	Beaglebone Black	kicked-off	in	many	leading	
(AMO)	labs	(Raspberry	Pi	is	also	popular)

• Embedded	computers
• Advantages:

– Higher	level	programming:	Python
• Disadvantages:

– Steeper	learning	curve:	networking,	unix,	python
– Programmable	Real-time	Unit	uses	C,	but	assembly	code	is	best

• However,	Beaglebone Blue for	education	led	by	UCSD	(ECE)	is	
now	available!
– https://beagleboard.org/blue

• Since	2015,	undergrads	in	leading	AMO	labs	are	programming	
FPGAs,	but	they	already	knew	Arduino.

Phys	124:	Lecture	1 8



Beaglebone Black	(http://beagleboard.com/black)

Phys	124:	Lecture	1 9

No	need	for	ethernet shield,	SD	shield,	display	shield,	PRU	runs	at	200MHz,	wireless	
instead	of	eth	version	available



Phys	124:	Lecture	1 10

FPGA	example:
http://redpitaya.com

Best	for	fast	signal	processing,	 it	can	become	an	oscilloscope,	 spectrum	analyzer,	fast	
feedback	control,	LCR	meter,	anything!	 		Programming:	 VHDL,	labview,	matlab,	python	



A	few	examples	from	my	lab

• Lab	temp	monitor	(undergraduate	project)
– I2C	over	ethernet cable,	tested	to	20	ft!	eight	devices.
– http://lab1.barreiro.ucsd.edu http://lab2.barreiro.ucsd.edu

Phys	124:	Lecture	1 11



Ultrahigh	Vacuum	bake:	heating	and	monitoring

Phys	124:	Lecture	1 12



Heating	with	Solid	State	Relays,	~40

Phys	124:	Lecture	1 13



Monitoring	with	thermocouples	(48!)

Phys	124:	Lecture	1 14



Stepper	motors	as	laser	shutters

Phys	124:	Lecture	1 15

v2	under	construction,	 PCB,
12	motors/board/bbb



Our	laser	shutter	control,	pro	version

Phys	124:	Lecture	1 16



Direct	Digital	Synthesis	chip	programming
• A	single	BBB	receives	programming	instructions	from	
ethernet for	4	DDS	(undergrad	project!).

Phys	124:	Lecture	1 17



BBBs	controlling	DDS	array,	with	RF	amplifiers

Phys	124:	Lecture	1 18



Examples	elsewhere	on	campus

• PHYS	270A	in	Graduate	Qbio program
– Experimental	Techniques	for	Quantitative	Biology
– a	lab	projects	class	using	Arduino	for	2	weeks
– examples:	control	temperature,	illuminate	and	move	
microscope	stage

– http://qbio.ucsd.edu/courses.php
– Search	UCSD	news	article	on	the	Hacker	lab

Phys	124:	Lecture	1 19



Altera.com

• Internetworking	of	physical	devices
• Applications	categories:

• All	common	to	academic	and	industrial	research,	e.g.,	
measurement	and	control	of	complex	experiments.

IoT

Phys	124:	Lecture	10 20



Economic	impact

Phys	124:	Lecture	10 21



Arduino	was	a	good	place	to	start

• But	there	are	more	powerful	and	cheaper	devices	
better	suited	for	IoT,	for	example:

Phys	124:	Lecture	10 22

Particle	Photon	 ($19) ESP8266	WiFi ($10-$16) Rasberry PI	Zero	($5)

Images	from	http://adafruit.com

• 16MHz	Atmega328	microcontroller
• 32KB	flash,	2KB	SRAM
• Digital	I/O:	14	pins,	Analog	pins:	6	

Arduino	specs:



Particle	Photon

Phys	124:	Lecture	10 23

• 120MHz	ARM	processor
• 1MB	flash,	128KB	RAM
• WiFi 802.11b/g/n
• I/O:

https://docs.particle.io/datasheets/photon-datasheet/



ESP8266	WiFi

Phys	124:	Lecture	10 24

• Arduino	 IDE	programmable
• 26-52MHz	processor
• 1MB	flash,	36KB	RAM
• WiFi 802.11b/g/n
• 16	GPIO
• 1	ADC
It	can	run	MicroPython!	

RTC	+	SD	add	on:



Raspberry	Pi	Zero

Phys	124:	Lecture	10 25

• 1GHz	ARM	processor
• SD	card	holder
• Video+Audio out
• USB	port	OTG
• I2C,	SPI,	lots	of	GPIO
• No	WiFi/eth
• Cons:	no	programmable

real	time	unit

https://leanpub.com/site_images/jerpi/rpiZ-08.png



Mission:	Get	up	to	Speed	Fast

• We’re	going	to	do	a	crash	course	this	first	week	to	
get	you	going	super-fast

• Involves	some	hardware	proficiency	(PHYS120)
– hooking	up	elements	in	breadboard,	e.g.

• But	mostly	it’s	about	coding	and	understanding	how	
to	access	Arduino functions

• Emphasis	will	be	on	doing	first,	understanding	 later
– not	always	a	natural	approach,	but	four	weeks	is	short

• Monday	lecture	will	often	focus	on	upcoming	lab
• Wed.	will	elaborate	and	show	in-class	examples
• Friday	may	often	provide	context/background

Phys	124:	Lecture	1 26



Every	Arduino “Sketch”

• Each	“sketch”	(code)	has	these	common	elements
// variable declarations, like
const int LED=13;

void setup()
{

// configuration of pins, etc.
}

void loop()
{

// what the program does, in a continuous loop
}

• Other	subroutines	can	be	added,	and	the	internals	
can	get	pretty	big/complex

Phys	124:	Lecture	1 27



Rudimentary	C	Syntax

• Things	to	immediately	know
– anything	after	// on	a	line	is	ignored	as	a	comment
– braces	{	} encapsulate	blocks
– semicolons	; must	appear	after	every	command

• exceptions	are	conditionals,	loop	invocations,	subroutine	titles,	
precompiler things	like	#include,	#define,	and	a	few	others

– every	variable	used	in	the	program	needs	to	be	declared
• common	options	are	int,	float,	char,	long,	unsigned long,	
void

• conventionally	happens	at	the	top	of	the	program,	or	within	
subroutine	if	confined	to	{	} block

– Formatting	(spaces,	indentation)	are	irrelevant	in	C
• but	it	is	to	your	great	benefit	to	adopt	a	rigid,	readable	format
• much	easier	to	read/debug	if	indentation	follows	consistent	rules

Phys	124:	Lecture	1 28



Example	Arduino Code
// blink_LED. . . . . . . slow blink of LED on pin 13
const int LED = 13; // LED connected to pin 13

// const: will not change in prog.

void setup() // obligatory; void->returns nada
{

pinMode(LED, OUTPUT);// pin 13 as output (Arduino cmd)
}

void loop() // obligatory; returns nothing
{

digitalWrite(LED, HIGH); // turn LED ON (Arduino cmd)
delay(1000); // wait 1000 ms (Arduino cmd)
digitalWrite(LED, LOW); // turn LED OFF
delay(1000); // wait another second

}

Phys	124:	Lecture	1 29



Comments	on	Code
• Good	practice	to	start	code	with	descriptive	comment

– include	name	of	sketch	so	easy	to	relate	print-out	to	source
• Most	lines	commented:	also	great	practice
• Only	one	integer	variable	used,	and	does	not	vary

– so	can	declare	as	const
• pinMode(),	digitalWrite(),	and	delay() are	Arduino

commands
• OUTPUT,	HIGH,	LOW are	Arduino-defined	constants

– just	map	to	integers:	1,	1,	0,	respectively
• Could	have	hard-coded	digitalWrite(13,1)

– but	less	human-readable	than	digitalWrite(LED, HIGH)
– also	makes	harder	to	change	output	pins	(have	to	hunt	for	each	

instance	of	13	and	replace,	while	maybe	not	every	13	should	be)

Phys	124:	Lecture	1 30



Arduino-Specific	Commands

• Command	reference:	
http://arduino.cc/en/Reference/HomePage
– Also	abbr.	version	in	Appendix	C	of	Getting	Started book	
(2nd ed.)

• In	first	week,	we’ll	see:
– pinMode(pin,	[INPUT	|	OUTPUT])
– digitalWrite(pin,	[LOW	|	HIGH])
– digitalRead(pin)à int

– analogWrite(pin,	[0…255])
– analogRead(pin)à int in	range	[0..1023]
– delay(integer milliseconds)
– millis()à unsigned long (ms	elapsed	since	reset)

Phys	124:	Lecture	1 31



Arduino Serial	Commands

• Also	we’ll	use	serial	communications	in	week	1:
– Serial.begin(baud):	 in	setup;	9600	is	common	choice
– Serial.print(string):	string	à “example text “

– Serial.print(data):	prints	data	value	(default	encoding)
– Serial.print(data,encoding)

• encoding	is	DEC,	HEX,	OCT,	BIN,	BYTE for	format

– Serial.println():	just	like	print,	but	CR	&	LF	(\r\n)	
appended

– Serial.available()à int (how	many	bytes	waiting)
– Serial.read()à char (one	byte	of	serial	buffer)
– Serial.flush():	empty	out	pending	serial	buffer

Phys	124:	Lecture	1 32



Types	in	C
• We	are	likely	to	deal	with	the	following	types
char c;          // single byte
int i;           // typical integer
unsigned long j; // long positive integer
float x;         // floating point (single precision)
double y;        // double precision

c = 'A';
i = 356;
j = 230948935;
x = 3.1415927;
y = 3.14159265358979;

• Note	that	the	variable	c=‘A’ is	just	an	8-bit	value,	which	
happens	to	be	65	in	decimal,	0x41	in	hex,	01000001
– could	say	c = 65;	or	c = 0x41;	with	equivalent	results

• Not	much	call	for	double	precision	in	Arduino,	but	good	
to	know	about	for	other	C	endeavors

Phys	124:	Lecture	1 33



Changing	Types	(Casting)

• Don’t	try	to	send	float	values	to	pins,	and	watch	out	
when	dividing	integers	for	unexpected	results

• Sometimes,	we	need	to	compute	something	as	a	
floating	point,	then	change	it	to	an	integer
– ival = (int) fval;
– ival = int(fval); // works in Arduino, anyhow

• Beware	of	integer	math:
– 1/4	=	0;	8/9	=	0;	37/19	=	1
– so	sometimes	want	fval = ((float) ival1)/ival2

– or	fval = float(ival1)/ival2 //okay in Arduino

Phys	124:	Lecture	1 34



Conditionals
• The	if statement	is	a	workhorse	of	coding

– if (i < 2)
– if (i <= 2)
– if (i >= -1)
– if (i == 4)// note difference between == and =
– if (x == 1.0)
– if (fabs(x) < 10.0)
– if (i < 8 && i > -5) // && = and
– if (x > 10.0 || x < -10.0) // || = or

• Don’t	use	assignment	(=)	in	test	clauses
– Remember	to	double	up	==,	&&,	||

• Will	execute	single	following	command,	or	next	{	} block
– wise	to	form	{	} block	even	if	only	one	line,	for	

readability/expansion
• Can	combine	with	else	statements	for	more	complex	

behavior

Phys	124:	Lecture	1 35



If..else construction

• Snippet	from	code	to	switch	LED	ON/OFF	by	listening	
to	a	button

• BUTTON	and	LED	are	simply	constant	integers	
defined	at	the	program	start

• Note	the	use	of	braces
– exact	placement/arrangement	unnec.,	but	be	consistent

Phys	124:	Lecture	1 36

void loop()
{

val = digitalRead(BUTTON);
if (val == HIGH){
digitalWrite(LED, HIGH);

} else {
digitalWrite(LED, LOW);

}
}



For	loops
• Most	common	form	of	loop	in	C

– also	while,	do..while loops
– associated	action	encapsulated	by	braces

• k is	iterated
– assigned	to	zero	at	beginning
– confined	to	be	less	than	10
– incremented	by	one	after	each	loop	(could	do	k += 1)

• for(;;)makes	infinite	loop	(no	conditions)
• x += 1means	x = x + 1;	x %= 4 means	x = x % 4

– countwill	go	1,	2,	3,	0,	1,	2,	3,	0,	1,	2	then	end	loop

Phys	124:	Lecture	1 37

int k,count;

count = 0;
for (k=0; k < 10; k++)
{
count += 1;
count %= 4;

}



Phys	124:	Lecture	1 38

#define to	ease	the	coding

• #define comes	in	the	“preamble”	of	the	code
– note	no	semi-colons
– just	a	text	replacement	process:	any	appearance	of	NPOINTS	in	

the	source	code	is	replaced	by	10
– Convention	to	use	all	CAPs to	differentiate	from	normal	variables	

or	commands
– Now	to	change	the	number	of	points	processed	by	that	program,	

only	have	to	modify	one	line
– Arduino.hdefines	handy	things	like	HIGH	=	0x1,	LOW	=	0x0,	INPUT	

=	0x0,	OUTPUT	=	0x1,	INPUT_PULLUP	=	0x2,	PI,	HALF_PI,	TWO_PI,	
DEG_TO_RAD,	RAD_TO_DEG,	etc.	to	make	programming	easier	to	
read/code

#define NPOINTS 10
#define HIGHSTATE 1



Voices	from	the	Past
• avoid	magnets	in	projects	(2013)
• heat	sinks	are	there	for	a	reason	(2013)
• make	circuit	diagrams	&	update	changes	(2013)
• robots	are	stupid (2013,	2014)
• use	the	oscilloscope	(2013)
• save	often,	and	different	versions	(2013,	2014,	2015)
• some	lectures	are	boring,	but	boring	≠	useless	(2013)
• start	early	(2014)
• comment	your	code	(2014)
• take	more	time	to	think	than	to	code	(2014)
• don’t	use	perf-board	unless	you	rock	at	soldering	(2014)

Phys	124:	Lecture	1 39



Voices,	Continued
• Listen	to	Professors	and	TAs	(2014)
• Use	Serial	Monitor	and	DVM	for	debugging	(2014,	2015)
• Pin	conflicts	are	real!	(2014)
• Know	what	pins	are	used	by	your	shield	(2014)
• Read	the	data	sheets	(2014)
• Walk	away	if	something	doesn’t	work	(2014)
• Know	the	purpose	of	every	line	of	code	(2015)
• A	simple	concept	might	not	be	so	simple	(2015)
• Pick	a	project	that	can	be	scaled	up	or	down	(2015)
• Get	your	own	Arduino &	practice/explore	(2015)
• Batteries	can	be	a	real	pain	(2015)
• Make	a	set	schedule	with	partner	(2015)

Phys	124:	Lecture	1 40



Announcements

• Can	go	to	lab	right	after	class	to	start	on	kits
– otherwise	Monday	or	Tuesday	lab	at	normal	2PM	start	time

• Late	labs	(even	by	an	hour)	incur	grade-point	penalty
– very	important	(for	project)	to	avoid	slippage
– can	accelerate	by	jumping	through	labs	ahead	of	schedule

• Will	have	midterm	to	check	basic	coding	proficiency	
• Grading	scheme:
– 50%	project	(proposal,	implementation,	success,	report)
– 36%	weekly	lab	(4	installments:	success/demo,	write-up)
– 10%	midterm	(coding	example)
– 4%	participation/attendance	of	lecture

Phys	124:	Lecture	1 41



Course	Website

• Visit
http://physics124.barreiro.ucsd.edu

– Assignments
– Lab	Exercises
– Useful	Links
– Contact	Info	&	Logistics

Phys	124:	Lecture	1 42


