Physics 124: Lecture 1

o «© h@lﬂ'mﬂﬂs
t

DIGITAL (PWM~) F &

e
-
t

ARDUINO

Course Structure
Crash Course for Arduino
Crash Coursein C

adapted from T. Murphy’s slides

Course Structure
MWEF Lecture->MW?? at least for first 5 weeks
— 4% of course grade on participation/attendance (down from 7%)

Structured Labs first 4 weeks (building blocks)

— demonstrated performanceis 36% of grade (9% each)
— mustadhereto due dates to preventfalling behind

Midterm to demonstrate simple coding, 10% of grade

Creative project second half of quarter, 50% of grade!
— final demonstration Friday March 24 with spectators

Work in teams of 2

Primary Lab periods: M/T 2-6
— atleast 2/3 of “help” will be on hand
— will have access to lab space 24/7

2 TAS:

— Darius Choksy and Rudy Pei, extensive research experience

Project Rubric

* Three principal ingredients (a feedback loop)

— Measure/Sense/Perceive
* the most physics-related component

— Process/Calculate/Think
e usuallyvia microcontroller

— Act/React/Do
* motors, lights, sound, display
 Examples from past (inadequately small sample)
— robotic hand moving as real hand via Kinect
— control type car parallel parks itself
— automatic shifting on bike
— rotating LED sphere changes color/intensity to music
— see for more

Why is this a Physics Course?

 What about this is physics? Why do we bother?
* True that this is not front/centerin physics research
 BUT...

— has been useful in research (mine and former advisors)
— |learn about sensors

— proficiency with a tool that can help control experiments
— learn some codingin C (well-used language in physics)

— more familiar with practical electronics

— learn team dynamics/communication

— deadlines

— gain confidence in ability to do something unique

* Goalis fun enough to motivate real investment
— a necessary ingredientto real learning

Arduino

This is our Brain in Phys124

®.. I @
g =W =

E S z
i S 3
DORX *)
't

RET « WWMW.ARDUIND.CC RST
© ARDUINO NAND'

BND v2.2 Pt
S T

..........
........

L]

Arduino Uno Arduino Nano
* http://arduino.cc
e Packaged Microcontroller (ATMega 328)

— lots of varieties; we’ll primarilyuse Uno and Nano

— USB interface; breakoutto pins for easy connections
— Cross-platform, Java-based IDE, C-based language

— Provides higher-level interface to guts of device

Phys 124: Lecture 1

Arduino Core Capabilities

* Arduino makes it easy to:
— have digital input/output (I/O) (14 channels on Uno)
— analoginput (6 channels on Uno; 8 on Nano)
— “analog” (PWM) output (6 of the digital channels)
— communicate data via serial (over USB makes easy)

 Libraries available for:

— motor control; LCD display; ethernet; SPI; serial; SD cards,
and lots more

* “Shields” for hardware augmentation
— stepper motor drivers
— LCD display
— GPS receiver
— bluetooth, SD card, ethernet, wireless, and lots more

Why Arduino?

Popular in labs 2005-2012, has key elements
Arduino is for all platforms Mac/Linux/Windows

Arduino is cheap (<=516 vs RPi3 $40, BBB $55, FPGA $150)
— so students can afford to play on their own (encouraged!)

Arduino programming usefully transfers to research
— C

Intermediate high-level functions mean less time at
register/bit level

— more time to learn about sensors, put amazing projects
together, rather than dwell on computer engineering

low-level understanding is useful

What’s popular in university labs nowadays?

Since 2013, Beaglebone Black kicked-off in many leading
(AMO) labs (Raspberry Pi is also popular)

Embedded computers
Advantages:
— Higher level programming: Python
Disadvantages:
— Steeper learning curve: networking, unix, python
— Programmable Real-time Unit uses C, but assembly code is best

However, Beaglebone Blue for education led by UCSD (ECE) is
now available!

— https://beagleboard.org/blue

Since 2015, undergrads in leading AMO labs are programming
FPGAs, but they already knew Arduino.

Beaglebone Black (http://beagleboard.com/black)

10/100 Ethernet Power Button
DC Power LEDS
USB, Host ' Reset Button
Easily connects
to aimost any USB Client
averyday device Development interfaca
such and directly powers
as mouse board from PC
or keyboard
2G8 on-board
microHOMI storage using
gont?c: ¢ “ 4 GHz Sitara eMMC
iy o H AM335x * Pre-lcaded with
moniors ' ARM Angslrbm Linux
end Ive Cortex™-A8 Distribution
processor * 8-bit bus
headers - accelerates
microSD Enable cape hardware | '0V0es 3 performance
Expansion slot for and include: more * Frees the microSD
additional storage « 65 digital VO advanced user siot to be used for
« 7 analog interface and addtional storage
512MB DDR3 * 4 seral up 1o 150% for a less
Faster, lower power -« 2SPI botter expensive solution
RAM for | Boot : (2; g&ms ‘ than SO cards
enhanced user-friendly Button . 4 imers than ARM11
o o b * And much much more!

No need for ethernet shield, SD shield, display shield, PRU runs at 200MHz, wireless
instead of eth version available

Phys 124: Lecture 1

FPGA example:

http://redpitaya.com
Hardware Overview

Fast analog inputs
(2 ch. @ 125 MSfs, 14 bits) _)
Analog Sig extension connector

Low speed ADCs (4 ch. @ 100 kS/s, 12 bits)
Low speed DACs (4 ch. @ 100 kS/s, 12 bits)

Fast analog outputs
(2 ch. @ 125 MSfs, 14 bits)

Digital sig. extension connector
16 FPGA GPIOs

Dual core ARM Cortex A9+ FPGA
{Zyng SoC)

Remote access
{Ethernet 1Gb/s)

USB port DDR3 RAM 512MB (4Gb)
(USB OTG) . .
Daisy chain connector
Console _
(micro USB) System & FPGA image
{micro SD card)
Power
(micro USB)

Best for fast signal processing, it can become an oscilloscope, spectrum analyzer, fast
feedback control, LCR meter, anything! Programming: VHDL, labview, matlab, python

Phys 124: Lecture 1

10

A few examples from my lab

* Lab temp monitor (undergraduate project)

— |12C over ethernet cable, tested to 20 ft! eight devices.

— http://labl.barreiro.ucsd.edu http://Iabz.barreiro.ucsd.edu

2 ‘AN

Phys 124: Lecture 1

11

Ultrahigh Vacuum bake: heating and monitoring

3 Y

U

Phys 124: Lecture 1

Heatmg with Solld State Relays "’40

Phys 124: Lecture 1

Monitoring with thermocouples (48!)

Phys 124: Lecture 1

Stepper motors as laser shutters

4

: v2 under construction, PCB,
= 12 motors/board/bbb

Phys 124: Lecture 1

Our laser shutter control, pro version

¥

(
-

-—\‘!"'\ _)-—
o - vﬂ_‘
, Sy | \‘;

Phys 124: Lecture 1

Direct Digital Synthesis chip programming

* Asingle BBB receives programming instructions from
ethernet for 4 DDS (undergrad project!).

H3AKAsSPPaqe

.........

Phys 124: Lecture 1 17

BBBs controlling DDS array, with RF amplifiers

Phys 124: Lecture 1

18

Examples elsewhere on campus

 PHYS 270A in Graduate Qbio program
— Experimental Techniques for Quantitative Biology
— a lab projects class using Arduino for 2 weeks

— examples: control temperature, illuminate and move
microscope stage

— http://gbio.ucsd.edu/courses.php

— Search UCSD news article on the Hacker lab

Experimental
Techniques for
Quantitative Biology

A hands-on laboratory course
in which the students learn and
use experimental techniques,
including optics, electronics,
chemistry, machining, and
computer interface, to design
and develop simple
instruments for quantitative
characterization of living
systems. Lab classes will
comprise five two-week
modules.

Experimental
Techniques for

Phys 124: Lecture 1

loT

INTERNET

OF THINGS

* Internetworking of physical devices

* Applications categories:

Tracking
behavior

Monitoring the behavior
of persons, things, or
data through space and
time.

Examples:
Presence-based
advertising and
payments based on
locations of consumers

Inventory and supply
chain monitoring and
management

Enhanced
situational
awareness

Achieving real-time
awareness of physical
environment.

Example:

Sniper detection using
direction of sound to
locate shooters

Sensor-driven
decision analytics

Assisting human
decision making through
deep analysis and data
visualization

Examples:

Qil field site planning
with 3D visualization and
simulation

Continuous monitoring
of chronic diseases to
help doctors determine
best treatments

Process
optimization

Automated control of
closed (self-contained)
systems

Examples:

Maximization of lime kiln
throughput via wireless
Sensors

Continuous, precise
adjustments in
manufacturing lines

Optimized resource
consumption

Control of consumption
to optimize resource use
across network

Examples:

Smart meters and
energy grids that match
loads and generation
capacity in order to
lower costs

Data-center manage-
ment to optimize energy,
storage, and processor
utilization

Complex
autonomous
systems

Automated control in
open environments with
great uncertainty

Examples:

Collision avoidance
systems to sense
objects and automati-
cally apply brake

Clean up of hazardous
materials through the
use of swarms of robots

* All common to academic and industrial research, e.g.,
measurement and control of complex experiments.

Phys 124: Lecture 10

20

Economic impact

The economic impact of the Internet of Things will be greater loT’s interoperability could deliver over $4 trillion out of
in advanced economies. an $11.1 trillion economic impact.

Share of economic impact, 2025, %

The Internet of Things (IoT): examples Potential economic impact,’

M Advanced economies =
2025, $ trillion

M Developing economies

of how interoperability enhances value

Settings Reasons for varying impact Factories—data from different types of _ 13
Healthcare spending in advanced equipment used to improve line efficiency :
Human 89 11 economies is twice that of developing
economies Cities—video, cell-phone data, and sensors _
Higher penetration of the Internet of used to monitor traffic and optimize flow 0.7
Homes 77 23 Things (IoT) in advanced economies;
higher value of time saved .))
. Retail—payment and item-detection systems
Impact of loT more valuable in linked for automatic checkout _ 0.7
Offices 75 25 advanced economies because of
higher costs and wages
]] Work sites—worker- and machinery-location - 05
Retail = s Higher adoption of loT data used to avoid accidents '
environments in advanced economies
_ Higher costs in advanced Vehlcles—equlpment-qsage data used in - 0.4
Vehicles 63 37 T presales analytics and insurance underwriting
i More autonomous vehicles Agriculture—multiple sensor systems used to
Cities o = in advanced economies improve farm management - 0.3
. Larger investments in automation Outside—inventory levels monitored at
Factories 574 43 . . . :
in advanced economies various stages of the supply chain - 03
Outside 56 44 Transpgrtation/shipping Spe.nding Homes—data from household energy systems
higher in advanced economies . l 0.1
used to track time usage
. Higher adoption of loT
LSS & e in advanced economies Offices—data from building systems and I <01
other buildings used to improve security :
Overall 62 38
estimate 'Includes sized applications only; includes consumer surplus.
McKinsey&Company | Source: Expert interviews; McKinsey Global Institute analysis
McKinsey&Company | McKinsey Global Institute analysis
Phys 124: Lecture 10 21

Arduino was a good place to start

Arduino Specs: * 16MHz Atmega328 microcontroller
 32KB flash, 2KB SRAM

* Digital I/0: 14 pins, Analog pins: 6

* But there are more powerful and cheaper devices
better suited for loT, for example:

Particle Photon ($19) ESP8266 WiFi (510-516) Rasberry Pl Zero (S5)

X1 XU GH# ¥# OF ZH ST | 08 oan

Q00000000

L)
lSd Y N3 9

Images from http://adafruit.com

Phys 124: Lecture 10 22

Particle Photon

* 120MHz ARM processor
e 1MB flash, 128KB RAM
* WiFi 802.11b/g/n

« |/O:

Peripheral Type Qty Input(l) / Output(0) FTM / 3v3L2]

Digital 18 I/0 FT/3V3
q_ . _ Analog (ADC) 8 | 3V3
NII\GN‘:) Xl - XH d)lM dvasv v A8 |)V : Analog (DAC) 2 o 3V3
;- peeceeee
| Ay P 4 6. . I « SPI 2 1/O 3V3
125 1 1/O 3V3
12C 1 1/0 FT
setup() { CAN 1 1/0 FT
.publish("my-event”,"The internet just got smarter!"); USB . /O 33
PWM 9% O 3V3

https://docs.particle.io/datasheets/photon-datasheet/

Phys 124: Lecture 10

ESP8266 WiFi

* Arduino IDE programmable
* 26-52MHz processor

« 1MB flash, 36KB RAM
i Ol * WiFi 802.11b/g/n
—- » 16 GPIO
VENDOR ARTHINKER | J#E 2ol s
<y It can run MicroPython!

RTC + SD add on:

Phys 124: Lecture 10 24

Raspberry Pi Zero

Power 3V3

~ /SDA 12C GPIO2
SCL12C GPIO3
GPIO4

Ground

GPIO17

GPI027

GPI022

Power 3V3

MOSI GPIO10

MISO GPIO9

SCLK =~ GPIO11

Ground

12C ID EEPROM ID_SD
GPIO5

GPIO6

GPIO13

GPIO19

GPI1026

Ground

https://leanpub.com/site images/jerpi/rpiZ-08.png

5V

5V
Ground
GPIO14
GPIO15
GPIO18
Ground
GPIO23
GP1024
Ground
GPI025
GPIO8
GPIO7
ID_SC
Ground
GPIO12
Ground
GPIO16
GPI1020
GPI021

o
2]
2]
D
77}
2]
[51]
o
@
@
)

Pi Mods | 2-

4+

Power

Power

UARTO_TXD
UARTO_RXD

PCM_CLK

CEO_N
CELN

12C ID EEPROM

Phys 124: Lecture 10

1GHz ARM processor

SD card holder

Video+Audio out

USB port OTG

12C, SPI, lots of GPIO

No WiFi/eth

Cons: no programmable
real time unit

25

Mission: Get up to Speed Fast

We’re going to do a crash course this first week to
get you going super-fast

Involves some hardware proficiency (PHYS120)

— hooking up elements in breadboard, e.g.

But mostly it’s about coding and understanding how
to access Arduino functions

Emphasis will be on doing first, understanding later

— not always a natural approach, but four weeks is short
Monday lecture will often focus on upcoming lab
Wed. will elaborate and show in-class examples
Friday may often provide context/background

Every Arduino “Sketch”

e Each “sketch” (code) has these common elements

// variable declarations, like
const int LED=13;

void setup()

{

// configuration of pins, etc.

void loop()
{

// what the program does, in a continuous loop

}
e Other subroutines can be added, and the internals
can get pretty big/complex

Phys 124: Lecture 1 27

Rudimentary C Syntax

Things to immediately know

— anything after // on a lineis ignored as a comment
— braces { } encapsulate blocks
— semicolons; must appear after every command

e exceptionsare conditionals, loop invocations, subroutine titles,
precompilerthings like #include, #define, and a few others

— every variable used in the program needs to be declared

* commonoptionsareint, float,char,long,unsigned long,
void

* conventionally happensatthetop of the program, or within
subroutine if confined to { } block

— Formatting (spaces, indentation)are irrelevantin C
* butitisto yourgreat benefittoadopta rigid, readable format
* much easier toread/debugifindentation follows consistent rules

Example Arduino Code

// blink LED. slow blink of LED on pin 13
const int LED = 13; // LED connected to pin 13

// const: will not change in prog.

void setup() // obligatory; void->returns nada

{
pinMode (LED, OUTPUT); // pin 13 as output (Arduino cmd)

void loop() // obligatory; returns nothing

{
digitalWrite(LED, HIGH); // turn LED ON (Arduino cmd)
delay(1000); // wait 1000 ms (Arduino cmd)
digitalWrite(LED, LOW); // turn LED OFF
delay(1000); // wait another second

Phys 124: Lecture 1

29

Comments on Code

Good practice to start code with descriptive comment
— include name of sketch so easyto relate print-outto source

Most lines commented: also great practice

Only one integer variable used, and does not vary
— so can declare as const
pinMode (), digitalwrite(), and delay() are Arduino
commands
OUTPUT, HIGH, LOW are Arduino-defined constants
— just mapto integers:1, 1, O, respectively
Could have hard-coded digitalwrite(13,1)

— butless human-readablethandigitalwWrite(LED, HIGH)

— also makes harder to change output pins (have to hunt for each
instance of 13 and replace, while maybe not every 13 should be)

Arduino-Specific Commands

e Command reference:
http://arduino.cc/en/Reference/HomePage

— Also abbr. version in Appendix C of Getting Started book

(2nd ed.)

e |n first week, we’ll see:

pinMode(pin, [INPUT | OUTPUT])

digitalwrite(pin, [LOW | HIGH])

digitalRead(pin) 2 int

analogWrite(pin, [0...255])

analogRead(pin) = int in range [0..1023]
delay(integer milliseconds)

millis() =2 unsigned long (ms elapsed since reset)

Arduino Serial Commands

e Also we’ll use serial communications in week 1:

Serial.begin(baud): in setup; 9600 is common choice

Serial.print(string): string =2 “example text “

serial.print(data): prints data value (default encoding)
(

serial.print(data,encoding)
* encoding is DEC, HEX, OCT, BIN, BYTE for format

Serial.println():justlike print, but CR & LF (\r\n)
appended

Serial.available() =2 int (how many bytes waiting)
Serial.read() =2 char (one byte of serial buffer)
Serial.flush():empty out pendingserial buffer

Typesin C

 We are likely to deal with the following types

char c; // single byte

int 1i; // typical integer

unsigned long j; // long positive integer

float x; // floating point (single precision)
double y; // double precision

c = 'A';

i = 356;

j = 230948935;

X = 3.1415927;

y = 3.14159265358979;

* Notethat thevariable c=“A" is just an 8-bit value, which

happens to be 65 in decimal, 0x41 in hex, 01000001

— couldsayc = 65;0rc = 0x41;with equivalentresults

* Not much call for double precision in Arduino, but good
to know about for other C endeavors

Phys 124: Lecture 1

33

Changing Types (Casting)

Don’t try to send float values to pins, and watch out
when dividing integers for unexpected results

Sometimes, we need to compute something as a
floating point, then change it to an integer

— ival = (int) fval;

— ival = int(fval); // works in Arduino, anyhow
Beware of integer math:

—1/4=0;8/9=0;37/19=1

— so sometimes want fval = ((float) ivall)/ival2
— or fval = float(ivall)/ival2 //okay in Arduino

Conditionals

The if statementis a workhorse of coding
— 1if (i < 2)

— 1if (1 <= 2)

— if (i >= -1)

— if (i == 4)// note difference between == and =
— 1if (x == 1.0)

— if (fabs(x) < 10.0)

— if (1 < 8 && i > -5) // && = and

— if (x > 10.0 || x < -10.0) // || = or

Don’t use assignment (=) in test clauses
— Rememberto doubleup ==, &&, ||
Will execute single following command, or next { } block

— wise to form{ } block even if only one line, for
readability/expansion

Can combine with else statements for more complex
behavior

If..else construction

* Snippet from code to switch LED ON/OFF by listening
to a button

void loop()
{

val = digitalRead(BUTTON);

if (val == HIGH){
digitalWrite(LED, HIGH);
} else {

digitalWrite(LED, LOW);
}
}

e BUTTON and LED are simply constant integers
defined at the program start

e Note the use of braces

— exact placement/arrangement unnec., but be consistent

For loops

* Most common form of loopinC
— alsowhile, do..while loops
— associated action encapsulated by braces

int k,count;

count = 0;
for (k=0; k < 10; k++)

- k isiterated
— assigned to zero at beginning
— confined to be less than 10
— incremented by one after each loop (coulddo k += 1)

- for(;;) makes infiniteloop (no conditions)
* X += 1mMmeansx = x + 1,x %= 4 Means x = x
— countwillgol,2,3,0,1,2,3,0,1, 2then end loop

#define to ease the coding

#define NPOINTS 10
#define HIGHSTATE 1

- #define comes inthe “preamble” of the code

note no semi-colons

just a text replacement process: any appearance of NPOINTS in
the source code is replaced by 10

Convention to use all CAPs to differentiate from normal variables
or commands

Now to change the number of points processed by that program,
only have to modify one line

Arduino.hdefines handy things like HIGH = 0x1, LOW = 0x0, INPUT
= 0x0, OUTPUT = 0x1, INPUT_PULLUP = 0x2, PI, HALF_PI, TWO_PI,
DEG_TO_RAD, RAD_TO DEG, etc. to make programmingeasierto
read/code

Voices from the Past

avoid magnets in projects (2013)

heat sinks are there for a reason (2013)

make circuit diagrams & update changes (2013)
robots are stupid (2013, 2014)

use the oscilloscope (2013)

save often, and different versions (2013, 2014, 2015)
some lectures are boring, but boring # useless (2013)
start early (2014)

comment your code (2014)

take more time to think than to code (2014)

don’t use perf-board unless you rock at soldering (2014)

Voices, Continued

Listen to Professors and TAs (2014)

Use Serial Monitor and DVM for debugging (2014, 2015)
Pin conflicts are real! (2014)

Know what pins are used by your shield (2014)
Read the data sheets (2014)

Walk away if something doesn’t work (2014)

Know the purpose of every line of code (2015)

A simple concept might not be so simple (2015)
Pick a project that can be scaled up or down (2015)
Get your own Arduino & practice/explore (2015)
Batteries can be a real pain (2015)

Make a set schedule with partner (2015)

Announcements

Can go to lab right after class to start on Kkits

— otherwise Monday or Tuesday lab at normal 2PM start time

Late labs (even by an hour) incur grade-point penalty
— very important (for project) to avoid slippage
— can accelerate by jumping through labs ahead of schedule

Will have midterm to check basic coding proficiency

Grading scheme:

— 50% project (proposal, implementation, success, report)
— 36% weekly lab (4 installments: success/demo, write-up)
— 10% midterm (coding example)

— 4% participation/attendance of lecture

Course Website

* Visit
http://physics124.barreiro.ucsd.edu

— Assignments

— Lab Exercises
— Useful Links
— Contact Info & Logistics

