
Physics	124:	Lecture	9

Project-related	Issues

Adapted	from	Tom	Murphy’s	lectures



Analog	Handling

• Once	the	microcontroller	is	managed,	it’s	often	the	
analog	end	that	rears	its	head
– getting	adequate	current/drive
– signal	conditioning
– noise/glitch	avoidance

• debounce is	one	example

– dealing	with	crude	simplicity	of	analog	sensors

• As	I	mentioned	before,	it’s	best	to	convert	analog	to	
digital	(ADC)	close	to	the	sensor	and	transfer	the	
measurements	outcomes	digitally
– I2C:	Inter-integrated	circuit	bus
– SPI:	Serial	Peripheral	Interface	bus

2Phys	124:	Lecture	9



Computers	are	pretty	dumb

• Operating	in	the	real	world	requires	advanced	
pattern	recognition
– the	Achilles	Heel	of	computers
– examples	of	failures/disappointments

• voice	recognition	(simple	1-D	time	series,	and	even	that’s hard)
• autopilot	cars?
• intolerance	for	tiny	mistakes/variations

– many	projects	require	discerning	where	a	source	is,	
avoiding	obstacles,	ignoring	backgrounds,	etc.
• just	keep	in	mind	that	things	that	are	easy	for	our	big	brains	(which	
excel	at	pattern	matching;	not	so	good	at	tedious	precision)	may	
prove	very	difficult	indeed	for	basic	sensors	and	basic	code

Phys	124:	Lecture	9 3



Getting	Enough	Current
• Some	devices/sensors	are	not	able	to	source	or	sink	

much	current
– Arduino can	do	40	mA per	pin,	which	is	big	for	this	business

• On	the	very	low	end,	an	op-amp	buffer	fixes	many	ills
– consider	phototransistor	hooked	to	3	kW sensing	resistor
– we’re	talking	mA of	current,	so	drawing	even	0.5	mA away	from	

the	circuit	to	do	something	else	will	change	the	voltage	across	
the	resistor	substantially

– enter	op-amp	with	inverting	input	jumped	‘round	to	output
– can	now	source	something	like	25	mA without	taxing	Vin one	

iota

Phys	124:	Lecture	9 4

-

+Vin



Phys	124:	Lecture	9 5

Transistor	Buffer

• In	the	hookup	above	(emitter	follower),	Vout =	Vin - 0.6
– sounds	useless,	right?
– there	is	no	voltage	“gain,”	but	there	is current	gain
– Imagine	we	wiggle	Vin by	DV:	Vout wiggles	by	the	same	DV
– so	the	transistor	current	changes	by	DIe =	DV/R
– but	the	base	current	changes	1/b times	this	(much	less)
– so	the	“wiggler”	thinks the	load	is	DV/DIb =	b·DV/DIe =	bR
– the	load	therefore	is	less	formidable

• The	“buffer”	is	a	way	to	drive	a	load	without	the	driver	
feeling	the	pain	(as	much):	it’s	impedance	isolation

out

R

in

Vcc



Push-Pull	for	Bipolar	Signals

• Sometimes	one-sided	buffering	is	not	
adequate
– need	two	transistors:	npn for	+	side,	pnp for	−
– idea	is	that	input	sees	high-impedance
– the	current	into	the	base	is	<	1/100	of	ICE
– load	current	provided	by	power	supply,	not	
source

• Called	a	Push-Pull	transistor	arrangement
• Only	problem	is	“crossover	distortion”
– npn does	not	turn	on	until	input	is	+0.6	V
– pnp does	not	turn	on	until	input	is	<	−0.6	V
– creates	dead-zone	in	between

Phys	124:	Lecture	9 6

outin

V+

V-



Phys	124:	Lecture	9 7

Hiding	Distortion
• Consider	the	“push-pull”	transistor	

arrangement	to	the	right
– an	npn transistor	(top)	and	a	pnp (bottom)
– wimpy	input	can	drive	big	load	(speaker?)
– base-emitter	voltage	differs	by	0.6V	in	each	

transistor	(emitter	has	arrow)
– input	has	to	be	higher	than	~0.6	V	for	the	

npn to	become	active
– input	has	to	be	lower	than	-0.6	V	for	the	pnp

to	be	active
• There	is	a	no-man’s	land	in	between	where	

neither	transistor	conducts,	so	one	would	
get	“crossover	distortion”
– output	is	zero	while	input
signal	is	between	-0.6	and	0.6	V

outin

V+

V-

crossover	distortion



Phys	124:	Lecture	9 8

Stick	it	into	an	op-amp	feedback	loop!

• By	sticking	the	push-pull	into	an	op-amp’s	feedback	loop,	we	guarantee	
that	the	output	faithfully follows	the	input!
– after	all,	the	golden	rule for	op-amps	demands	that	+	input	=	- input

• Op-amp	jerks	up	to	0.6	and	down	to	-0.6	at	the	crossover
– it’s	almost	magic:	it	figures	out	the	vagaries/nonlinearities	of	the	thing	in	the	

loop	
• Now	get	advantages	of	push-pull	drive	capability,	without	the	mess

-

+Vin

out

V+

V-

input	and	output	
now	the	same



Phys	124:	Lecture	9 9

Dogs	in	the	Feedback

• The	op-amp	is	obligated	to	contrive	the	inverse	
dog so	that	the	ultimate	output	may	be	as	tidy	as	
the	input.

• Lesson:	you	can	hide	nasty	nonlinearities	in	the	
feedback	loop	and	the	op-amp	will	“do	the	right	
thing”	

-

+Vin

doginverse	dog

“there	is	no	dog”

We	owe	thanks	to	Hayes	&	Horowitz,	p.	173	of	the	student	manual	companion	to
the	Art	of	Electronics for	this	priceless	metaphor.



MOSFETs often	a	good	choice
• MOSFETs are	basically	

voltage-controlled	switches
– n-channel	becomes	“short”	

when	logic	high	applied
– p-channel	becomes	“short”	

when	logic	low	applied
– otherwise	open

• Can	arrange	in	H-bridge	(or	
use	pre-packaged	H-bridge	
on	a	chip)
– so	A=HI;	A’=LOW	applies	VDD	

to	left,	ground	to	right
– B=HI;	B’=LOW	does	the	opp.
– A	and	A’	always	opposite,	etc.
– A	and	B	default	to	LOW	state

Phys	124:	Lecture	9 10



Timing	Issues

• Microcontrollers	are	fast,	but	speed	limitations	may	
well	become	an	issue	for	some

• Arduino processor	runs	at	clock	speed	of	16	MHz
– 62.5	ns	=	0.0625	µs
– machine	commands	take	1,	2,	3,	or	4	cycles	to	complete

• see	chapter	32	of	datasheet	(pp.	537−539)	for	table	by	command

– but	Arduino C	commands	may	have	dozens	of	associated	
machine	commands
• for	example,	digitalWrite() has	78	commands,	though	not	all	
will	be	visited,	as	some	are	conditionally	branched	around	(~36	if	not	
PWM	pin)

• testing	reveals	4	µs per	digitalWrite() operation	(5 if	PWM	pin)
• implies	about	64	(80)	clock	cycles	to	carry	out

Phys	124:	Lecture	9 11



Timing	Exploration,	continued
• Program	is	basically	repetitive	commands,	with	
micros() bracketing	actions
– micros() itself	(in	16	repeated	calls,	nothing	between)	
comes	in	at	taking	4	µs to	complete

– Serial.print() takes	1040	µs per	character	at	9600	
baud
• 8	data	bits,	start	bit,	stop	bit	à 10	bits,	expect	1041.7	µs
• println() adds	2-character	delay

– digitalRead() takes	4	µs per	read
– analogRead() takes	122	µs per	read

• Also	keep	in	mind	20	ms	period	on	servo	50	Hz	PWM
• And	when	thinking	about	timing,	consider	inertia
– might	detect	obstacle	5	cm	ahead	in	<	1	ms,	but	can	you	
stop	in	time?

Phys	124:	Lecture	9 12



Another	Way	to	Explore	Timing

• Don’t	be	shy	to	use	the	oscilloscope
– a	pair	of	digitalWrite() commands,	HIGH,	then	LOW,	
will	create	a	pulse	that	can	be	easily	triggered,	captured,	
and	measured

– for	that	matter,	you	can	use	digital	output	pins	expressly	
for	the	purpose	of	establishing	relative	timings	between	
events

– helps	if	you	have	to	choreograph,	synchronize,	or	just	
troubleshoot	in	the	time	domain

– think	of	the	scope	as	another	debugging	tool,	
complementary	to	Serial,	and	capable	of	faster	information	

Phys	124:	Lecture	9 13



Control	Problems
• When	it	comes	to	controlling	something	through	
feedback,	always	think	PID	first
– PID:	proportional,	integral,	derivative

Phys	124:	Lecture	9 14

control	value:

error	signal

desired	output

actual	output subtract

add



PID,	in	pieces
• Proportional	(Ghost	of	Conditions	Present)

– where	are	we	now?
– simple	concept:	take	larger	action	for	larger	error
– in	light-tracker,	drive	more	degrees	the	larger	the	difference	

between	phototransistors
– higher	gain	could	make	unstable;	lower	gain	sluggish

• Integral	(Ghost	of	Conditions	Past)
– where	have	we	been?
– sort	of	an	averaging	effect:	error	× time
– responds	to	nagging	offset,	fixing	longstanding	errors
– looking	to	past	can	lead	to	overshoot,	however,	if	gain	is	too	

high
• Derivative	(Ghost	of	Conditions	Future)

– where	are	we	heading?
– damps	changes	that	are	too	fast;	helps	control	overshoot
– gain	too	high	amplifies	noise	and	can	produce	instability

Phys	124:	Lecture	9 15



PID,	in	pictures

• Impact	of	changing	different	
gains,	while	others	held	
fixed
– blue	is	desired	response
– green	is	nominal	case

• Kp =	Ki =	Kd =	1	in	this	case
– ideal	values	depend	on	system

Phys	124:	Lecture	9 16

P I

D



Tuning	PID	Control

• See	http://en.wikipedia.org/wiki/PID_controller
• One	attractive	suggested	procedure	(Ziegler-Nichols):
– first	control	the	system	only	with	proportional	gain
– note	ultimate	gain,	Ku,	at	which	oscillation	sets	in
– note	period	of	oscillation	at	this	ultimate	gain,	Pu
– If	dealing	with	P	only,	set	Kp =	0.5Ku
– If	PI	control:	set	Kp =	0.45	Ku;	Ki =	1.2Kp/Pu
– If	full	PID:	Kp =	0.6Ku;	Ki =	2Kp/Pu;	Kd =	Kp×Pu/8

• Control	Theory	is	a	rich,	complicated,	PhD-earning	
subject
– not	likely	to	master it	in	this	class,	but	might	well	scratch	the	
surface	and	use	some	well-proven	techniques

Phys	124:	Lecture	9 17



Discrete	implementation

Phys	124:	Lecture	9 18

For	the	derivation	for	PI	only	and	PID	(above),	see	notes	on	the	class	website.



Announcements

• Project	Proposals	due	Friday	Nov.	3	by	11:59pm

• Week	4/5	lab:
– could	work	on	light-tracker	(due	in	two	weeks,	11/6,	11/7)
– could	work	on	proposals	with	“consultants”	at	hand

• After	midterm,	we’ll	begin	project	mode

Phys	124:	Lecture	9 19


