Physics 124: Lecture 9

Adapted from Tom Murphy’s lectures

Analog Handling

* Once the microcontroller is managed, it’s often the
analog end that rears its head
— getting adequate current/drive
— signal conditioning
— noise/glitch avoidance
* debounce is one example

— dealing with crude simplicity of analog sensors

* As | mentioned before, it’s best to convert analog to
digital (ADC) close to the sensor and transfer the
measurements outcomes digitally

— |12C: Inter-integrated circuit bus
— SPI: Serial Peripheral Interface bus

Computers are pretty dumb

* Operating in the real world requires advanced
pattern recognition

— the Achilles Heel of computers

— examples of failures/disappointments
 voice recognition (simple 1-D time series, and even that’s hard)
* autopilot cars?
* intolerance for tiny mistakes/variations

— many projects require discerning where a source is,
avoiding obstacles, ignoring backgrounds, etc.

 just keep in mind that things that are easy for our big brains (which
excel at pattern matching; not so good at tedious precision) may
prove very difficult indeed for basic sensors and basic code

Getting Enough Current

 Some devices/sensors are not able to source or sink
much current

— Arduino can do 40 mA per pin, which is big for this business

* Ontheverylow end, an op-amp buffer fixes many ills
— consider phototransistor hooked to 3 kC2 sensing resistor

— we’re talking mA of current, so drawing even 0.5 mA away from
the circuit to do something else will change the voltage across
the resistor substantially

— enter op-amp with inverting input jumped ‘round to output

— can now source something like 25 mA without taxing V,, one
jota

« Transistor Buffer

out

* In the hookup above (emitter follower), V, =V, — 0.6
— sounds useless, right?
— there is no voltage “gain,” but there is current gain
— Imagine we wiggle V; by AV: V_ . wiggles by the same AV
— so the transistor current changes by Al, = AV/R
— but the base current changes 1/ times this (much less)
— so the “wiggler” thinks the load is AV/Al, = B-AV/Al, = BR
— the load therefore is less formidable

* The “buffer” is a way to drive a load without the driver
feeling the pain (as much): it’s impedance isolation

Push-Pull for Bipolar Signals

 Sometimes one-sided buffering is not Y

adequate
— need two transistors: npn for + side, pnp for -

in out

— idea is that input sees high-impedance
— the current into the base is < 1/100 of /;

— load current provided by power supply, not
source

e Called a Push-Pull transistor arrangement

* Only problem is “crossover distortion”
— npn does not turn on until input is +0.6 V
— pnp does not turn on until input is < -0.6 V
— creates dead-zone in between

Hiding Distortion

* Consider the “push-pull” transistor
arrangement to the right

an npn transistor (top) and a pnp (bottom)
wimpy input can drive big load (speaker?) v

base-emitter voltage differs by 0.6V in each
transistor (emitter has arrow)

input has to be higher than ~0.6 V for the
npn to become active

out

input has to be lower than —0.6 V for the pnp
to be active

* Thereis ano-man’s land in between where
neither transistor conducts, so one would crossover distortion

signal is between —0.6 and 0.6 V

get “crossover distortion”
output is zero while input /

Stick it into an op-amp feedback loop!

V+
«— input and output
v \/ now the same

By sticking the push-pull into an op-amp’s feedback loop, we guarantee
that the output faithfully follows the input!

— after all, the golden rule for op-amps demands that + input = — input

Op-amp jerks up to 0.6 and down to —0.6 at the crossover

— it’s almost magic: it figures out the vagaries/nonlinearities of the thing in the
loop

Now get advantages of push-pull drive capability, without the mess

Phys 124: Lecture 9

Dogs in the Feedback

“there is no dog”

inverse dog dog

* The op-amp is obligated to contrive the inverse
dog so that the ultimate output may be as tidy as
the input.

e Lesson: you can hide nasty nonlinearities in the
feedback loop and the op-amp will “do the right
thing”

We owe thanks to Hayes & Horowitz, p. 173 of the student manual companion to
the Art of Electronics for this priceless metaphor.

Phys 124: Lecture 9

MOSFETs often a good choice

* MOSFETs are basically T
voltage-controlled switches % %
— n-channel becomes “short” P schoty Diode | A >
when logic high applied ol %%hsa;g¢> T s B’
— p-channel becomes “short” (w)
when logic low applied Bl o
— otherwise o.pen | /opgzr:;merate |E> | e | émmspg
e Can arrange in H-bridge (or & % . - %
use pre-packaged H-bridge fone
on a chip) l

— so A=HI; A’=LOW applies VDD -
to left, ground to right

— B=HI; B’=LOW does the opp.
— A and A’ always opposite, etc.
— A and B default to LOW state

Timing Issues

* Microcontrollers are fast, but speed limitations may
well become an issue for some

* Arduino processor runs at clock speed of 16 MHz
— 62.5 ns =0.0625 pus

— machine commands take 1, 2, 3, or 4 cycles to complete
» see chapter 32 of datasheet (pp. 537-539) for table by command

— but Arduino C commands may have dozens of associated
machine commands

* for example, digitalWrite () has 78 commands, though not all

will be visited, as some are conditionally branched around (~36 if not
PWM pin)

* testing reveals 4 us per digitalWrite () operation (5 if PWM pin)
* implies about 64 (80) clock cycles to carry out

Timing Exploration, continued

* Program is basically repetitive commands, with
micros () bracketing actions

— micros () itself (in 16 repeated calls, nothing between)
comes in at taking 4 us to complete

— Serial.print () takes 1040 us per character at 9600
baud

8 data bits, start bit, stop bit = 10 bits, expect 1041.7 us
 println() adds 2-character delay

— digitalRead () takes 4 us per read
— analogRead () takes 122 us per read

* Also keep in mind 20 ms period on servo 50 Hz PWM

* And when thinking about timing, consider

— might detect obstacle 5 cm ahead in < 1 ms, but can you
stop in time?

Another Way to Explore Timing

 Don’t be shy to use the oscilloscope

— a pairof digitalwrite() commands, HIGH, then LOW,
will create a pulse that can be easily triggered, captured,
and measured

— for that matter, you can use digital output pins expressly
for the purpose of establishing relative timings between
events

— helps if you have to choreograph, synchronize, or just
troubleshoot in the time domain

— think of the scope as another debugging tool,
complementary to Serial, and capable of faster information

Control Problems

 When it comes to controlling something through
feedback, always think PID first
desired output

— PID: proportional, integral, derivative ()

actual output

Plant / Y() e(t) error signal
—{P Ko }—
control value: g (t)
+ ,
<« 1 Klemdr |<

D K, de (t)

PID, in pieces

* Proportional (Ghost of Conditions Present)
— where are we now?
— simple concept: take larger action for larger error

— in light-tracker, drive more degrees the larger the difference
between phototransistors

— higher gain could make unstable; lower gain sluggish

* Integral (Ghost of Conditions Past)
— where have we been?
— sort of an averaging effect: error x time
— responds to nagging offset, fixing longstanding errors
— qulging to past can lead to overshoot, however, if gain is too
I8
* Derivative (Ghost of Conditions Future)
— where are we heading?
— damps changes that are too fast; helps control overshoot
— gain too high amplifies noise and can produce instability

PID, in picture

1.5 T T
reference signal |
Kp=2
Kp=05
1F —
‘Kp=1 Ki=1 Kd=1

05F

0

1

* Impact of changing different
gains, while others held
fixed

— blue is desired response
— green is nominal case
* K,=K;=Ky=1in this case
— ideal values depend on system

15

05¢

0

T T
reference signal

1
16

1
18

Phys 124: Lecture9 Y

1] 20
Kd=05 | reference signal
Kd=2
@G
\ Kp=1 Ki=1 Kd=1
1 1 1 1 1 1 1 1 1
2 4 6 g 10 12 14 16 18 20 16

Tuning PID Control

e See http://en.wikipedia.org/wiki/PID controller

* One attractive suggested procedure (Ziegler-Nichols):
— first control the system only with proportional gain
— note ultimate gain, K, at which oscillation sets in
— note period of oscillation at this ultimate gain, P,
— If dealing with P only, set K, = 0.5K,,
— If Pl control: set K, =0.45 K ; K; = 1.2K /P,
— If full PID: K, = 0.6K; K; = 2K /P,; K4 = K %P /8
* Control Theory is a rich, complicated, PhD-earning
subject

— not likely to master it in this class, but might well scratch the
surface and use some well-proven techniques

Discrete implementation

sampling time At

u(ty) = u(tp-1) + K, [(1 + %t + Z) e(tr) + (—1 — %) e(tr—1) + %e(tk_z)

T; = Kp/KiaTd — Kd/Kp

For the derivation for Pl only and PID (above), see notes on the class website.

Phys 124: Lecture 9 18

Announcements

* Project Proposals due Friday Nov. 3 by 11:59pm

e Week 4/5 lab:

— could work on light-tracker (due in two weeks, 11/6, 11/7)
— could work on proposals with “consultants” at hand

e After midterm, we’ll begin project mode

