Physics 124: Lecture 4

LCD Text Display
Keypads and Time Slicing
Interrupts

adapted from T. Murphy’s lectures

2x16 LCD

* Typically 5x8 dots per character
* Note 16 pins: indicator of common interface

= ——T Y — U wwWr W
% % % ¥ ¥ ¥ ¥ ¥ ¥ M M VW WV N ET N F N " F " ® F R FYF PR R F®P FP P FPEFPERERE DD

NS} YV NYSYENVYRNY

¥ "‘"'-.‘,:'A\';'- e 47 i LR (%l - p Yy RS -J”:"-?;‘." T ok 2 M
R L s R T O o AL A
:..; " . 5 “ Yy . i ¢ ! . g g 7'

b \ 4) . & -' ¢

Phys124:Lecture 4

Typical LCD Unit pinout
pin_lfuncton | Arduinopin (shield) _

1 ground GND
2 +5V +5V
3 VEE (contrast via potentiometer between 0 and 5V) pot on shield
4 Register Select 8
(LOW = command; HIGH = data/characters)
5 RW (LOW = Write; HIGH = Read) GND
6 E (Enable strobe: toggle to load data and command) 9
7-14 data bus 4,5,6,7 - D4,D5,D6,D7

15 backlight +V
16 backlight ground

Note that most features are accessible using only the 4 MSB data pins

Phys124:Lecture 4

Arduino LCD Shield

 Handy package, includes buttons, contrast pot, some
pins/headers for other connections
— consumes Arduino pins 4,5,6, 7, 8,9
— leaves 0, 1 for Serial, 2, 3, 10, 11, 12, 13

* failsto make pin 10 available on header, though

EREEHACD CEEHIEEE™

VERHU!

P RST 5uq.::m PLE whh
) B BeRee® @ua
L E—F S RREE® 2"

1wys 124: Lecture

contrast adjust

_ Arduino pin breakout
a few other pins
B e
g 98 P syl ¥
- o

. a
a
o

UCC
M EEEEEEEE EEEEEEEE
0000000000000000

3
wuwu. DFRobot. cn
wuwuw. DFRobot. com
wuwuw. DFRobot. com. cn

up
SELECT LEFT

=ISROBOT
l O l RIGTH QST LCD Keypad Shield
uL.0

IOl Te) | 6 llOl IOIpST's'u' Ty

- s€)—— A1—A5 on “S”
000000ON000000
“DOUN

0.0 0000 Ikt
buttons utilize AO analog input

Buttons

The buttons use a voltage
divider tree to present an
analog voltage to A0

— note “RIGTH” typo made it
onto printed circuit board!

Tom measured the following:
— none:4.95V

— SELECT:3.59V

— LEFT: 2.44V

— DOWN:1.60V

— UP:0.70V

— RIGHT: 0.0V

Easily distinguishable

VCC
TRJ
K
Py
RIGTH =~ [1 meeest -
SW5X6 R
330
RECE
UP I4 . o
SW5X6 ‘
620
1 , 7
DOWN I4 d— s
SWSX
SW5X6 g
. 2
LEFT I4 — .
SW5X
IO 33K

LCD Datasheet

Upper 4

e [P [B[] | 1 5
woccor| @ | 4| V1 |A|C 2= AP 1 [E &SR
woaero| @ | %6 1 | BRI [~ [T ¢ /0|50
|0 [P RFICS e |5 3EF A0/3a
o] o |2 E |G| DIT AL HE®REAGIESE
woor| 0 | 2| DIE e [uld o ¥ HIADIA1S
For behind-the-scenes control of the LCD display, see

the datasheet
— http://physics124.barreiro.ucsd.edu/wp-

content/uploads/sites/41/2017/01/LCD HD44780.pdf

Above is just one snippet of the sort of things within

And one other snippet from LCD datasheet

Character Codes Character Patterns
(DDRAM data) CGRAM Address (CGRAM data)
76543210 543210 76543210
High Low High Low High Low

0 0 0 «+ +J1 11 1]0})

0 0 1 A 1{0 0 of1

]

‘010 1/l0 0 0

EO 3 1 1111; Character

. : pattern (1)

000O0* 000 ooo:100 iolilo o

11 0 1 1/0 o|1]0

i1 10 Y 10 0 01

P11 1 °°°:ooooo}c:ursorposition

10 0 0 * + +|1]0 0 0f1])

10 0 1 § ioj1]0]1|0

'0 1 0 T1 111 on

01 1 "0 o|1[0 o] § “haracter

. attern (2)

000O0™*O0O0 1 0015100 = S p

]

'1 0 1 ‘0 ol1[0 O

i1 10 Y ‘oo0|1]|o o0

111 1 + + +i00000O0 }Cursorposition

* Datasheets: they build character (at least characters)

Phys124:Lecture 4

The LiquidCrystal Library

* Thisis one place few are itching for low-level control
— or wait—where’s the fun/challenge in that attitude?

* Library makes simple

#include <LiquidCrystal.h>
LiquidCrystal 1lcd(8, 9, 4, 5, 6, 7); // matches shield config

void setup() {
lcd.begin(16, 2); // # columns & rows
lcd.print("Phys 124 Rules!");

}

void loop() {

lcd.setCursor (0, 1); // first col, second row (0 base)
// print the number of seconds since reset:
led.print (millis()/1000);

}

Phys124:Lecture 4 9

The setup call

 Argumentsin LiquidCrystal type are:
— pins Corresponding tO: Register Select, Enable, D4, D5, D6, D7
— don’t need shield at all; just those 6 pins and power/gnd
— here’s one without shield: must hook R/W to gnd; rig pot

Phys124:Lecture 4 10

Same thing in schematic form

* Note this pinout is different than shield’s mapping

. 4
3V3 5V Vin Ves
Power
—] RST D13 |— Vee
ey AREF D12 Vo
Arduino on = RS
D10 =X ¢ R/W
N ‘
2
8 p7
9 3 — — DB1 —
S p |pum o8 8
10K potentiometer E; - —
oo
>
A2 C?—J D3 — DB5
=)
)
| A 5 e DB6
2 ™p
—_— A4 5 D1 | DB
— RX «
GND el LED-

Explore the library

e (Can do alot with a few functions, but more available
— LiquidCrystal() must use
— begin() must use

I .

nw |0 |
C |m
BLh
m_‘

etCursor() almost certainly use
write

— print() almost certainly use

ursor

oCursor()

(23

I
>

— displa

— noDisplay()

— scrollDisplayLeft()
— scrollDisplayRight()
— autoscroll()

— noAutoscroll()

— leftToRight()

— rightToLeft()

— createChar()

I
o |S |T
o |=
o D
— | A
)
=~

LCD References

 Good general intro to LCD control
— http://spikenzielabs.com/SpikenzielLabs/LCD How To.html

* Arduino page
— http://arduino.cc/en/Tutorial/LiquidCrystal
e See links on course site:

— https://physics124.barreiro.ucsd.edu/doc-links/
LCD shield schematic
LCD datasheet

* The goal is to get you started with one kind of
displays and explore others on your own and our
help.

Keypads

* Most keypads are matrix form: row contact and
column contact

— pressing button connects one row to one column

YOo—% © © ©
| T T T
Y20—% AS) © ©
~ | ~|
30— © 2Y) o
| T T T
YaO—= hY) RS ©
| T T T
a 02 B

note crossings do not connect:
dots indicate connection

Reading the keypad

Imagine we hooked the rows
(Y) to four digital inputs with
pull-up resistors

— and hooked the columns (X) up to
digital outputs

Now cycle through X, putting
each to zero (LOW) in turn

— otherwise enforce high state
Read each row value and see if
any inputs are pulled low

— means switch closed, button
pressed

Called time-slicing

+5

e % ° © °
%\q Y~ T T
20-—% s 5 S
$ s S S VAL
B % © ° ©
%\o\ | T Y
Vao——% 5 5 ©
T T Ty
xR B

Those Pesky Pullups

* Arduino has a pinMode option to engage internal
pullup resistors

— pinMode (p/n, INPUT PULLUP);
— does just what we want

* Let’s start by defining our pins (example values)

— and our key characters
#define ROW1l 12 // or whatever pin is hooked to rowl
etc.

#define COL1 8
etc.

#define ROWS 4
#define COLS 4

char keys[ROWS][COLS] = { // handy map of keys
{'1','2','3"'",'A'}, // black 4x4 keypad
{'4'I 1'6'I'B'}I
{'7'I I'9'I'C'}I
{("*','0",'#",'D"}

}i

int pressed, last, row, col, ch; // variables used later
Phys124:Lecture 4

16

Now set up pins in setup ()

state is high;

// We will use Serial Monitor

pinMode (ROW1l, INPUT PULLUP) ;

etc.

pinMode (COL1l, OUTPUT);

etc.

digitalWrite(COL1l, HIGH); // def.

Serial.begin(9600) ;

* Now in loop()

pressed = 0; //

//

digitalWwrite(COL1l, LOW); //

if (digitalRead(ROW1l) == LOW)
pressed = 0x11; //

if (digitalRead (ROW2) == LOW)
pressed = 0x21; //

etc.

digitalWrite(COL1l, HIGH); //

value for no press
row/col encoded in
assert col 1 low

upper digit 1is row

lower digit is col

reset coll to high

etc. for all 4 columns; the scheme for pressed is just one way, my first impulse

Phys124:Lecture 4

start high

8 bits

17

Piecing together at end of loop

if (pressed != 0 && pressed != last)

{ //

row = pressed >> 4; //
col = pressed & 0x0f; //
ch = keys[row-1][col-1]; //

if (ch = '#") //
Serial.print(ch);
else
Serial.println(""); //
}
last = pressed; //
delay(40); //

row/col encoded in 8 bits
drop 4 LSB, look at upper 4
kill upper 4 bits; keep 4 LSB
get character from map

treat # as newline

just want return

preserve knowledge
debounce delay

* printonlyif new press, new line if ‘#' pressed
— note >> bit shift row look at high nibble;
— and mask lower 4 bits for isolating lower nibble

— thus decodeinto row and column (at least this is one way)

Phys124:Lecture 4 18

Cleaning up code

* Repeating the sweep four times during the loop is a
bit clumsy, from a coding point of view

— begs to be function()-ized

int readCol(int column)

{
int row press = 0;
digitalWrite(column, LOW);
if (digitalRead(ROW1l) == LOW)
row press = 1;
1if (digitalRead(ROW2) == LOW)
row press = 2;

etc. // repeat for each row
digitalWrite(column, HIGH);

return row press;

Phys124:Lecture 4

Now a function to sweep columns

int sweepCols()

{
int row press; // keep track of row
int pressed = 0; // returned key coordinates
row press = readCol(COL1);
if (row press > 0)
pressed = (row press << 4) + 1;
etc.
row press = readCol(COL4) ;
if (row press > 0)
pressed = (row press << 4) + 4;
return pressed;
}

now in main loop, just: pressed = sweepCols(); and otherwise same

Phys124:Lecture 4

20

And, there’s a Library

 Of course thereis...

On Arduino IDE (1.6 or above, in the labs we have >1.8):

Sketch->Include Library->Manage Libraries... Then search for Keypad & install.
#include <Keypad.h>

const byte ROWS = 4; //four rows
const byte COLS = 3; //three columns

char keys[ROWS][COLS] = {{'1','2"','3"'}, {'4','5','6'},

{l7|,l8l,|9l}, {l#lllolll*,}};
byte rowPins[ROWS] = {5, 4, 3, 2}; //conn. to the row pins of the keypad
byte colPins[COLS] = {8, 7, 6}; //conn. to the col pins of the keypad

Keypad keypad = Keypad(makeKeymap(keys), rowPins, colPins, ROWS, COLS);

void setup(){
Serial.begin(9600);}

void loop(){
char key = keypad.getKey();
if (key != NO_KEY)
Serial.println(key);

Phys124:Lecture 4 21

Some Notes on the Keypad Library

* Note that the key map is taken seriously by Keypad.h
— if any character appears twice, it messes up

— therefore more than a printing convenience; a core
functional element of the operation

* Functions
— void begin(makeKeymap (userKeymap))
— char waitForKey /()
— char getKey()
— KeyState getState()
— boolean keyStateChanged()
— setHoldTime (unsigned int time)
— setDebounceTime(unsigned int time)
— addEventListener (keypadEvent)

* Consultlink on previous slide for descriptions

Combining LCD and Keypad?

The LCD uses six digital pins
A 4x4 keypad needs & pins

Uno has 14, but pins 0 and 1 are used by Serial
— could forgo serial communications, and max out pins

Need a better way,
Take a page from LCD shield buttons: use analog input

Many schemes are possible

— generally: +5 V on rows/cols, GND on other, resistors
between

— could have all 16 buttons map to a analog input

* interesting problem in designing appropriate network
(done last year by one team)

— or make it easier and map to four analog inputs

Four-Input Scheme

+5 R1

VV—O 0 0 e 0

R2

A O 0 B> RS

R3
VV—C he) R he) O

R4
~“W-0——g hs ps S

Al A2 A3 A4
R5 R6 R7 R8
GND

e R1 thru R4 could be 10 k€2, 4.7 kQ2, 2.2 k€2, 1 kC2

* R5 thru R8 could be all 3.3 k€2, or in that ballpark

— voltages will be 0 (nothing pressed), 1.25 V (top row),
2.06V; 3 V; and 3.8 V for resp. rows — lots of separation

e Poll each A# input to ascertain keypress

Interrupts

e Sometimes we can’t afford to miss a critical event,
while the main loop is busy, or in a delay, etc.

* Interrupts demand immediate attention

* Uno has two interrupts
— int.0on pin 2; int.1onpin 3
— Mega has 6 available interrupts

* You can exempt some of loop from interruption

— may be rare that you need to do this, but...
void loop()
{
noInterrupts();

// critical, time-sensitive code here
interrupts();

// other code here

Easily implemented

* Just have to attach an interrupt to a service routine
— attachInterrupt(, ,) ;
— the interruptnumberis0 or 1 on Uno (pins2 or 3)**

— the function, or service routine, is some function you’ve
created to service the interrupt: name it whatever makes
sense

— trigger _type can be
* RISING: detects edge from logic low to logic high
* FALLING: detects falling edge
 CHANGE: any change between high/low (watch out for bounce!)
 LOW: a low state will trigger an interrupt

— notethatdelay () will not work within the service routine

* need delayMicroseconds (), only good up to 16383 us
* but not often interested in delay in interrupt routine

Simple example

* Turn on/off LED via interrupt; note volatile variable

int pin = 13;
volatile int state = LOW;

void setup()

{
pinMode(pin, OUTPUT);

attachInterrupt (0, blink, CHANGE); // interrupt 0 is pin 2
}

void loop()

{
digitalWrite(pin, state);
// careful with long delays here!

}

void blink()
{

state = !state;
} Phys124:Lecture 4

27

Interrupt Notes

* [nside the attached function, delay() won't work and
the value returned by millis() will not increment.
Serial data received while in the function may be lost.
You should declare as volatile any variables that you
modify within the attached function.

 See the page for attachInterrupts():
— http://arduino.cc/en/Reference/Attachlnterrupt

Interrupts from analog?

 What if we need to make a digital interrupt out of an
analog signal like the analog-scheme keypad?

e Canusea to sense if we’re above or
below some threshold voltage

— outputis digital state

— could also use a high-pass (differentiator) to sense any
significant change in the analog level, fed into a
comparator

Comparator Basics
+5V ¥
Vin + " 5V o
Vout / v,
Ve |~ | V..)/_/ _____

time
Scheme is: when + input larger than - input, transistor driven to ON
— then current flows through transistor and output is pulled low
When V,, < V.o Vo is pulled high (through the pull-up resistor—
usually 1 k€2 or more)

— this arrangement is called “open collector” output: the output is basically
the collector of an npn transistor: in saturation it will be pulled toward
the emitter (ground), but if the transistor is not driven (no base current),
the collector will float up to the pull-up voltage

The output is a “digital” version of the signal
— with settable low and high values (here ground and 5V)

Comparator Demo with

1y 60.70kB/s

< 5% redpitaya

SETTINGS~

AUTO SCALE

~N. N

N\

Amplitude / V.
0.7

X

LR AR AR

Offset/ V

Phase / deg A Duty cycle / %
0 4| 500

+3.7V
LiPo battery

INT 500 mV/div R
IN2 200 mV/div

OUT1 5 V/div

OUT2 200 mV/div

RED
reference

Phys124:Lecture 4

Time 1 ms/d

BOms

122.070kS/s

I\
Trig ¢+ IN1 500 mV

=

+3.7V
LiPo battery

RED
reference

Can Gang Open-Collector Comparators into Chain

 Put same (or different)threshold
values on - inputs and four
differentanalog signals on +

— tie all four open collectors together
with common pull-up

— if any comparator activates, the
associated transistor will pull the
combined output low, and the other
(off) transistors won’t care

e The “311” comparator is standard:

LM311 ors LM339
LM311 is obsolete!
Be careful how you use this! Think ;)

Phys124:Lecture 4

vYYY

33

Announcements

* Grades will be posted on TED
* All labs 1 turned in.

* |In Week 3 lab, we will:
— make an LCD analog voltage meter
— read a 4x4 keypad using the time-slice method and 8 pins
— combine the keypad, LCD, and interruptsinto a party

