
Physics	124:	Lecture	4

LCD	Text	Display
Keypads	and	Time	Slicing

Interrupts

adapted	from	T.	Murphy’s	lectures

2×16	LCD	

• Typically	5×8	dots	per	character
• Note	16	pins:	indicator	of	common	interface

Phys	124:	Lecture	4 2

Typical	LCD	Unit	pinout
pin function Arduino pin	(shield)

1 ground GND

2 +5	V +5	V

3 VEE	(contrast via	potentiometer	 between	0	and	5	V) pot	on	shield

4 Register	Select
(LOW	=	command;	HIGH =	data/characters)

8

5 RW	(LOW	=	Write;	 HIGH	=	Read) GND

6 E	(Enable	strobe:	toggle	to	load	data	and	command) 9

7-14 data	bus 4,5,6,7	à D4,D5,D6,D7

15 backlight	+V

16 backlight	ground

Phys	124:	Lecture	4 3

Note	that	most	features	are	accessible	 using	only	the	4	MSB	data	pins

Arduino LCD	Shield
• Handy	package,	includes	buttons,	contrast	pot,	some	

pins/headers	for	other	connections
– consumes	Arduino pins	4,	5,	6,	7,	8,	9
– leaves	0,	1	for	Serial,	2,	3,	10,	11,	12,	13

• fails	to	make	pin	10	available	on	header,	though

Phys	124:	Lecture	4 4

Phys	124:	Lecture	4 5

contrast	adjust Arduino pin	breakout
a	few	other	pins

A1—A5	on	“S”

buttons	utilize	A0	analog	 input

Buttons
• The	buttons	use	a	voltage	
divider	tree	to	present	an	
analog	voltage	to	A0
– note	“RIGTH”	typo	made	it	
onto	printed	circuit	board!

• Tom	measured	the	following:
– none:	4.95	V
– SELECT:	3.59	V
– LEFT:	2.44	V
– DOWN:	1.60	V
– UP:	0.70	V
– RIGHT:	0.0	V

• Easily	distinguishable
Phys	124:	Lecture	4 6

LCD	Datasheet

• For	behind-the-scenes	control	of	the	LCD	display,	see	
the	datasheet
– http://physics124.barreiro.ucsd.edu/wp-
content/uploads/sites/41/2017/01/LCD_HD44780.pdf

• Above	is	just	one	snippet	of	the	sort	of	things	within
Phys	124:	Lecture	4 7

And	one	other	snippet	from	LCD	datasheet

• Datasheets:	they	build	character	(at	least	characters)

Phys	124:	Lecture	4 8

The	LiquidCrystal Library

• This	is	one	place	few	are	itching	for	low-level	control
– or	wait—where’s	the	fun/challenge	in	that attitude?

• Library	makes	simple

Phys	124:	Lecture	4 9

#include <LiquidCrystal.h>

LiquidCrystal lcd(8, 9, 4, 5, 6, 7); // matches shield config

void setup() {
lcd.begin(16, 2); // # columns & rows
lcd.print("Phys 124 Rules!");

}

void loop() {
lcd.setCursor(0, 1); // first col, second row (0 base)

// print the number of seconds since reset:
lcd.print(millis()/1000);

}

The	setup	call

• Arguments	in	LiquidCrystal type	are:
– pins	corresponding	to:	Register	Select,	Enable,	D4,	D5,	D6,	D7
– don’t	need	shield	at	all;	just	those	6	pins	and	power/gnd
– here’s	one	without	shield:	must	hook	R/W	to	gnd;	rig	pot

Phys	124:	Lecture	4 10

Same	thing	in	schematic	form

• Note	this	pinout is	different	than	shield’s	mapping

Phys	124:	Lecture	4 11

Explore	the	library
• Can	do	a	lot	with	a	few	 functions,	but	more	available

– LiquidCrystal() must	use
– begin() must	use
– clear()
– home()
– setCursor() almost	certainly	use
– write()
– print() almost	certainly	use
– cursor()
– noCursor()
– blink()
– noBlink()
– display()
– noDisplay()
– scrollDisplayLeft()
– scrollDisplayRight()
– autoscroll()
– noAutoscroll()
– leftToRight()
– rightToLeft()
– createChar()

Phys	124:	Lecture	4 12

LCD	References

• Good	general	intro	to	LCD	control
– http://spikenzielabs.com/SpikenzieLabs/LCD_How_To.html

• Arduino page
– http://arduino.cc/en/Tutorial/LiquidCrystal

• See	links	on	course	site:
– https://physics124.barreiro.ucsd.edu/doc-links/

• LCD	shield	schematic	
• LCD	datasheet

• The	goal	is	to	get	you	started	with	one	kind	of	
displays	and	explore	others	on	your	own	and	our	
help.

Phys	124:	Lecture	4 13

Keypads

• Most	keypads	are	matrix	form:	row	contact	and	
column	contact
– pressing	button	connects	one	row	to	one	column

Phys	124:	Lecture	4 14

note	crossings	do	not	connect:
dots	 indicate	connection

Reading	the	keypad
• Imagine	we	hooked	the	rows	
(Y)	to	four	digital	inputs	with	
pull-up	resistors
– and	hooked	the	columns	(X)	up	to	
digital	outputs

• Now	cycle	through	X,	putting	
each	to	zero	(LOW)	in	turn
– otherwise	enforce	high	state

• Read	each	row	value	and	see	if	
any	inputs	are	pulled	low
– means	switch	closed,	button	
pressed

• Called	time-slicing

Phys	124:	Lecture	4 15

+5

+5

+5

+5

Those	Pesky	Pullups
• Arduino has	a	pinModeoption	to	engage	internal	
pullup resistors
– pinMode(pin,	INPUT_PULLUP);
– does	just	what	we	want

• Let’s	start	by	defining	our	pins	(example	values)
– and	our	key	characters

Phys	124:	Lecture	4 16

#define ROW1 12 // or whatever pin is hooked to row1
etc.
#define COL1 8
etc.
#define ROWS 4
#define COLS 4
char keys[ROWS][COLS] = { // handy map of keys

{'1','2','3','A'}, // black 4x4 keypad
{'4','5','6','B'},
{'7','8','9','C'},
{'*','0','#','D'}

};
int pressed, last, row, col, ch; // variables used later

Now	set	up	pins	in	setup()

• Now	in	loop()

Phys	124:	Lecture	4 17

pinMode(ROW1, INPUT_PULLUP);
etc.
pinMode(COL1, OUTPUT);
etc.
digitalWrite(COL1, HIGH); // def. state is high; start high
Serial.begin(9600); // We will use Serial Monitor

pressed = 0; // value for no press
// row/col encoded in 8 bits

digitalWrite(COL1, LOW); // assert col 1 low
if (digitalRead(ROW1) == LOW)

pressed = 0x11; // upper digit is row
if (digitalRead(ROW2) == LOW)

pressed = 0x21; // lower digit is col
etc.
digitalWrite(COL1, HIGH); // reset col1 to high

etc.	for	all	4	columns;	 the	scheme	 for	pressed is	 just	one	way,	my	first	impulse	

Piecing	together	at	end	of	loop

• print	only	if	new	press,	new	line	if	‘#’ pressed
– note	>> bit	shift	row	look	at	high	nibble;
– and	mask	lower	4	bits	for	isolating	lower	nibble
– thus	decode	into	row	and	column	(at	least	this	is	one way)

Phys	124:	Lecture	4 18

if (pressed != 0 && pressed != last)
{ // row/col encoded in 8 bits

row = pressed >> 4; // drop 4 LSB, look at upper 4
col = pressed & 0x0f; // kill upper 4 bits; keep 4 LSB
ch = keys[row-1][col-1]; // get character from map
if (ch != '#’) // treat # as newline

Serial.print(ch);
else

Serial.println(""); // just want return
}
last = pressed; // preserve knowledge
delay(40); // debounce delay

Cleaning	up	code

• Repeating	the	sweep	four	times	during	the	loop	is	a	
bit	clumsy,	from	a	coding	point	of	view
– begs	to	be	function()-ized

Phys	124:	Lecture	4 19

int readCol(int column)
{

int row_press = 0;
digitalWrite(column, LOW);
if (digitalRead(ROW1) == LOW)

row_press = 1;
if (digitalRead(ROW2) == LOW)

row_press = 2;
etc. // repeat for each row
digitalWrite(column, HIGH);

return row_press;
}

Now	a	function	to	sweep	columns

Phys	124:	Lecture	4 20

int sweepCols()
{

int row_press; // keep track of row
int pressed = 0; // returned key coordinates

row_press = readCol(COL1);
if (row_press > 0)

pressed = (row_press << 4) + 1;
etc.
row_press = readCol(COL4);
if (row_press > 0)

pressed = (row_press << 4) + 4;

return pressed;
}

now	in	main	 loop,	just:		pressed = sweepCols(); and	otherwise	 same

And,	there’s	a	Library
• Of	course	there	is…
On	Arduino	 IDE	(1.6	or	above,	 in	the	labs	we	have	>1.8):	
Sketch->Include	 Library->Manage	 Libraries...	 Then	search	 for	Keypad &	install.

Phys	124:	Lecture	4 21

#include <Keypad.h>
const byte ROWS = 4; //four rows
const byte COLS = 3; //three columns
char keys[ROWS][COLS] = {{'1','2','3'}, {'4','5','6'},

{'7','8','9'}, {'#','0','*’}};
byte rowPins[ROWS] = {5, 4, 3, 2}; //conn. to the row pins of the keypad
byte colPins[COLS] = {8, 7, 6}; //conn. to the col pins of the keypad

Keypad keypad = Keypad(makeKeymap(keys), rowPins, colPins, ROWS, COLS);

void setup(){
Serial.begin(9600);}

void loop(){
char key = keypad.getKey();
if (key != NO_KEY)
Serial.println(key);

}

Some	Notes	on	the	Keypad	Library
• Note	that	the	key	map	is	taken	seriously	by	Keypad.h
– if	any	character	appears	twice,	it	messes	up
– therefore	more	than	a	printing	convenience;	a	core	
functional	element	of	the	operation

• Functions
– void begin(makeKeymap(userKeymap))
– char waitForKey()
– char getKey()
– KeyState getState()
– boolean keyStateChanged()
– setHoldTime(unsigned int time)
– setDebounceTime(unsigned int time)
– addEventListener(keypadEvent)

• Consult	link	on	previous	slide	for	descriptions
Phys	124:	Lecture	4 22

Combining	LCD	and	Keypad?
• The	LCD	uses	six	digital	pins
• A	4x4	keypad	needs	8	pins
• Uno	has	14,	but	pins	0	and	1	are	used	by	Serial
– could	forgo	serial	communications,	and	max	out	pins

• Need	a	better	way,	less	greedy
• Take	a	page	from	LCD	shield	buttons:	use	analog	input
• Many	schemes	are	possible
– generally:	+5	V	on	rows/cols,	GND	on	other,	resistors	
between

– could	have	all	16	buttons	map	to	a	single	analog	input
• interesting	problem	in	designing	appropriate	network	

(done	 last	year	by	one	team)
– or	make	it	easier	and	map	to	four	analog	inputs

Phys	124:	Lecture	4 23

Four-Input	Scheme

• R1	thru	R4	could	be	10	kΩ,	4.7	kΩ,	2.2	kΩ,	1	kΩ
• R5	thru	R8	could	be	all	3.3	kΩ,	or	in	that	ballpark
– voltages	will	be	0	(nothing	pressed),	1.25	V	(top	row),	
2.06V;	3	V;	and	3.8	V	for	resp.	rows	— lots	of	separation

• Poll	each	A#	input	to	ascertain	keypress
Phys	124:	Lecture	4 24

+5 R1

R2

R3

R4

R5 R6 R7 R8
GND

A1 A2 A3 A4

Interrupts

• Sometimes	we	can’t	afford	to	miss	a	critical	event,	
while	the	main	loop	is	busy,	or	in	a	delay,	etc.

• Interrupts	demand	immediate	attention
• Uno	has	two	interrupts
– int.0	on	pin	2;	int.1	on	pin	3
– Mega	has	6	available	interrupts

• You	can	exempt	some	of	loop	from	interruption
– may	be	rare	that	you	need	to	do	this,	but…

Phys	124:	Lecture	4 25

void loop()
{

noInterrupts();
// critical, time-sensitive code here
interrupts();
// other code here

}

Easily	implemented
• Just	have	to	attach	an	interrupt	to	a	service	routine

– attachInterrupt(int#,	function,	trigger_type);
– the	interrupt	number	is	0	or	1	on	Uno	(pins	2	or	3)**
– the	function,	or	service	routine,	is	some	function	you’ve	
created	to	service	the	interrupt:	name	it	whatever	makes	
sense

– trigger_type can	be
• RISING:	detects	edge	from	logic	low	to	logic	high
• FALLING:	detects	 falling	edge
• CHANGE:	any	change	between	 high/low	(watch	out	for	bounce!)
• LOW:	a	low	state	will	trigger	an	interrupt

– note	that	delay()will	not	work	within	the	service	routine
• need	delayMicroseconds(),	 only	good	up	to	16383	µs
• but	not	often	 interested	 in	delay	in	interrupt	 routine

Phys	124:	Lecture	4 26

Simple	example

• Turn	on/off	LED	via	interrupt;	note	volatile	variable

Phys	124:	Lecture	4 27

int pin = 13;
volatile int state = LOW;

void setup()
{

pinMode(pin, OUTPUT);
attachInterrupt(0, blink, CHANGE); // interrupt 0 is pin 2

}

void loop()
{

digitalWrite(pin, state);
// careful with long delays here!

}

void blink()
{

state = !state;
}

Interrupt	Notes

• Inside	the	attached	function,	delay()	won't	work	and	
the	value	returned	by	millis()	will	not	increment.	
Serial	data	received	while	in	the	function	may	be	lost.	
You	should	declare	as	volatile	any	variables	that	you	
modify	within	the	attached	function.

• See	the	page	for	attachInterrupts():
– http://arduino.cc/en/Reference/AttachInterrupt

Phys	124:	Lecture	4 28

Interrupts	from	analog?

• What	if	we	need	to	make	a	digital	interrupt	out	of	an	
analog	signal	like	the	analog-scheme	keypad?

• Can	use	a	comparator	to	sense	if	we’re	above	or	
below	some	threshold	voltage
– output	is	digital	state
– could	also	use	a	high-pass	(differentiator)	to	sense	any	
significant	change in	the	analog	level,	fed	into	a	
comparator

Phys	124:	Lecture	4 29

Phys	124:	Lecture	4 30

Comparator	Basics

• Scheme	 is:	when	+	input	larger	than	−	input,	transistor	driven	 to	ON
– then	current	flows	through	transistor	and	output	 is	pulled	 low

• When	Vin <	Vref,	Vout is	pulled	high	(through	the	pull-up	resistor—
usually	1	kΩ or	more)
– this	arrangement	 is	called	“open	collector”	output:	 the	output	 is	basically	

the	collector	of	an	npn transistor:	 in	saturation	 it	will	be	pulled	toward	
the	emitter	(ground),	but	if	the	transistor	 is	not	driven	(no	base	current),	
the	collector	will	float	up	to	the	pull-up	voltage

• The	output	is	a	“digital”	version	of	the	signal
– with	settable low	and	high	values	(here	ground	and	5V)

+

−Vref

Vin Vout

+5	V

R
5	V

Vref

Vout

Vin

time

V

Phys	124:	Lecture	4 31

Comparator	Demo	with	RedPitaya

+

−Vref

Vin Vout

+5	V

R
YELLOW
outputRED

reference

GREEN
sine	wave

+3.7V
LiPo battery

𝑉"#$ = 0.7	𝑉

+

−Vref

Vin Vout

+5	V

R
YELLOW
outputRED

reference

GREEN
sine	wave

+3.7V
LiPo battery

Phys	124:	Lecture	4 32

𝑉"#$ = 0.1	𝑉

𝑉"#$ = 0.5	𝑉

Can	Gang	Open-Collector	Comparators	 into	Chain

• Put	same	(or	different)	threshold	
values	on	−	inputs	and	four	
different	analog	signals	on	+
– tie	all	four	open	collectors	together	

with	common	pull-up
– if	any	comparator	activates,	the	

associated	transistor	will	pull	the	
combined	output	low,	and	the	other	
(off)	transistors	won’t	care

• The	“311”	comparator	is	standard:	
LM311	ors LM339
LM311	is	obsolete!	

Be	careful	how	you	use	this!		Think	;)

Phys	124:	Lecture	4 33

+

−

+

−

+

−

+

−

Announcements

• Grades	will	be	posted	on	TED
• All	labs	1	turned	in.
• In	Week	3	lab,	we	will:
– make	an	LCD	analog	voltage	meter
– read	a	4x4	keypad	using	the	time-slice	method	and	8	pins
– combine	the	keypad,	LCD,	and	interrupts	into	a	party

Phys	124:	Lecture	4 34

