Physics 124: Lecture 2

Topics and Techniques for Week 1 Lab

Week 1 Lab has 4 Exercises

Blinking an LED in a Morse Code pattern
Modulating LED brightness via PWM
Using a switch to toggle LED and set brightness

Analog input, reading a photocell
— and possibly doing something about it

Note that the last two constitute miniature versions
of the final project

— sense somethingin the real world; make some decisions
accordingly; manipulate something in the real world in
response

These tasks largely follow from the Getting Started
book

LED hookup

The output of Arduino
digital 1/0 pins will be
either O or 5 volts

An LED has a diode-like I-

V curve

Can’t just put 5V across
— it’ll blow, unless currentis

limited
Put resistor in series, so
~2.5 V drop across each

— 250 ©Q would mean 10 mA
— 10 mA is pretty bright

2.5

LED I-V curves for red, green, and blue

2.0f

rrent (mA)

S 1.0}

0.5f

0'%.0 0.5 1.0 1.5
voltage

5V

2.5

Blink Function (Subroutine)

For complex blink patterns, it pays to consolidate blink
operation into a function

void blink(int ontime, int offtime)

{

// turns on LED (externally defined) for ontime ms
// then off for offtime ms before returning
digitalWrite(LED, HIGH);
delay(ontime);
digitalWrite(LED, LOW);
delay(offtime);

}

Now call with, e.g., b1ink (600, 300)
Note function definition expects two integer arguments

LED is assumed to be global variable (defined outside of
loop)

Phys 124: Lecture 2

* For something like Morse Code, could imagine

Blink

building functions on functions, like e e

2. A dash ks three units.
g n parts of the same letter is ane un

#define DOTDUR 200

void dot () //
{ blink(DOTDUR,DOTDUR); }

void dash() //

{ blink(3*DOTDUR,DOTDUR); }

void letterspace() //
{ delay(2*DOTDUR); } //

void wordspace() //
{ delay(4*DOTDUR); } //

Note use of #define

— and therefore overall cadence: change in one place!

Constructs

International Morse Code

ce bet etters =
The space between wards

dot, plus gap

dash, plus gap

aim for gap of 3
already have one

NI OVOZErA——IOTMMO N>
!

‘.l
‘.l
Io

aim for gap of 7
already have three

s seven un

)

V ° mm

We mm mm
Xm0 ¢ mm

Y oum o mmm mmm

4 § KX

1o mum um sum mum
20 0 Imm mmm mmm
Se e e mm mm
40900 0mm
500000
OCmmeoeooe
7o e ee
Somm mmm mmm 0 o
O nmm BN B BN ¢
Omen men mun men

to specify duration of dot

Phys 124: Lecture 2

Morse, continued

* And then perhaps letter functions:

void morse s()
{ dot(); dot(); dot(); letterspace(); }

void morse o()
{ dash(); dash(); dash(); letterspace(); }

* You could then spell out a word pretty easily like:

morse s();
morse o();
morse s();
wordspace (

) ;

* Onceyou have a library of all the letters, it would be
very simple to blink out anything you wanted

— could even cleverly Morse-out string, like “HELLO”

Pulse Width Modulation

A “poor man’s” analog output can be synthesized out
of a digital (0-5 V) signal by pulsing at variable duty
cycle

— the time average voltage can then be anything between O
and 5V

Arduino provides analogWrite(pin, value), valid for
6 of the 14 digital 1/O pins on the Uno

— value is a number from 0 to 255 (one byte)

For controlling LED brightness, the fraction of time in
the ON state determines perceived brightness

For other applications, may want capacitor to
average (smooth) out the frenzied pulse sequence

PWM, Visually
e At right, pulse period

Pulse Width Modulation

0% Duty Cycle - analogWrite(0)

denoted by green v ‘
markers ov
° Can go from always LOW ., 25% Duty Cycle - analogWrite(64)
(0% duty cycle) to always -l | —I —l —l
HlGH (100% duty CyC|e) : 50% Duty Cycle—analogWrite(lZ?L)
— oranythingin between, in | | |
255 Steps 75% Duty Cycle - analogWrite(191)
* Can change period, if 2t I |_ I_l I_ I_
needed Ov .
. thOUgh Only among llmlted . | 100% Duty Cycle - analogWrite(255)
selection of options ov ‘
R
vin O_IVW\’TO vnur

— 1.

Phys 124: Lecture 2 |ow pass filter can smooth out

Switches & Debouncing

 Switchescome in a dizzying variety PT—O T

— normally open (NO), normally closed (NC) SPDT"_QO?
» applies to single throw, typically

— single pole (SP), double pole (DP), etc.
* how many inputs to the switch

— single throw (ST), double throw (DT), etc.
* how many contacts each input may make
* DT can also come in CO variety: center open

* The Arduino kit buttonis NO, SPST

— itis normallyopen, one input (shared two pins),
one output (shared two pins)

* But switches are not as simple as you think | T

— transition from open to closed can be erratic,
random, fast oscillation, bouncing many times
between states before settling

DPST

DPDT

input side

Typical Bounce

1 2.00V —0.00s 10.0%/ [Snglyl STOP
5 5 5 . from softsolder.com

A = 1

t1 = 0.000 s t2 = 44.20ms &t = 44.20ms 78t = 22.62 Hz

On the tens of milliseconds timescale, a switch can
actually go through any number of transitions

Each time will look completely different

Idea is to catch first transition, then hold off until you’re
sure things have settled out

Delay Can Save the Day

A fast microprocessor looking for switch transitions
can catch all these bounces, as if you had pressed the
button many times in fast succession

— thisis seldom the behavior we want
Inserting a delay gives the physical switch time to
settle out

— somethinglike 50-100 ms is usually good; faster than you
can intentionally press twice (see dt_pair)

Often use hardware solution too, with flip-flops
— lock in first edge

Will also be relevant when we get to interrupts

Thinking Through Complex Logic

* In the dimmer exercise, it’s tough to keep track of
the states

* Tendency to want to grasp entire scheme at once

* Brains don’t often work that way
— break it down to pieces you understand: divide & conquer

— ask yourself questionsthroughout the process
* Dol justneedto know the state of the button, or catch change?
* If catchinga change, whatam | comparingagainst?
* Dol needa variableto keep track of a previous state?
* |[f so,when do | storethe “old” value?
* If the button hasjust been pressed, what shoulddo?
* Does the answer depend on the LED state?
* Thendo | need a variableto track this? (andthe list goes on!)

Analog to Digital Conversion (ADC)

Computers are digital, while the physical world is
analog

Converting voltage (analog value expressed
electrically) into a digital number is a fundamental
task in computer/world interface

Internally, the processor is doing a “guess and check”
approach from most significant bit (MSB) to LSB

Arduino Uno has six analog inputs, turning each into
a 10-bit number, 0..1023

— measure 0-5 V range to 0.1%, or 5 mV precision

This is your key portal into using sensors

Assignments/Announcements

* First week exercises due Mon/Tue, 10-02/03 by 2PM
— depends on whether you are in Mon or Tue lab session
— can drop in slot on TA room in back of MHA 3544

— expect code printout(can be common to group), and some
paragraphs from each group member as to contribution:
how do we know you did something and /earned?

 TA office hours start next week
— Preferred days, times?

