Physics 124: Lecture 12

Timer Basics

 The Arduino Uno/Nano (ATMega 328) has three
timers available to it (Arduino Mega has 6)

— max frequency of each is 16 MIHz, (as assembled)

is an 8-bit timer, with 1, 8, 64, 256, 1024 prescaler
options

is a 16-bit timer, with 1, 8, 64, 256, 1024 prescaler
options
is an 8-bit timer with 1, 8, 32, 64, 128, 256, 1024
prescaler options
e These timers, recall, are used for PWM pins 5&6,
9&10, 3&11, respectively

— we saw that we could change the PWM frequency by
messing with the frequency prescaler values

— but PWM frequency is not the same as clock frequency

Prescaling & Frequency

e The Arduino boards run the ATMega chip at 16 MHz

— so a prescaler of 1 resultsin a 16 MHz clock
— a prescaler of 1024 results in 15.625 kHz

e Recall the PWM table:

TCCROB 1,2,3,4,5 62500, 7812,977, 244, 61.0
9, 10 TCCR1B 1,2,3,4,5 31250, 3906, 488, 122, 30.5
3,11 TCCR2B 1,2,3,4,5,6,7 31250, 3906, 977, 488, 244,122, 30.5

— the top frequency is not 16 MHz, off by 256x and 512x

— this is because PWM is (presumably) counting a certain
number of clock cycles (256 or 512) between actions

Phys 124: Lecture 12

Prescaling Implementation on-chip

Figure 17-2. Prescaler for Timer/Counter0 and Timer/Counteri "

clk * » 10-BIT TIC PRESCALER I
Ve } Claar
[=a) i =5
3] 3
PSRSYNC b %
i
&
»
To TTTTTTTTTTTTTTTY *

1
— 1 Synchronization i

Ty gemmnIIIIIIIIIIE T De
= Synchronization : T l 0 l
L T —
Y ¥ Y ¥ ¥ Y Y l*r!ff"l'

CE10 500
CENM CE01
Cs12 502

TIMER/COUNTER1 CLOCK SOURCE
clky,

e From ATMega full datasheet
— CS bits decide which tap to output (note orig. clock in pos. 1)

Phys 124: Lecture 12

TIMER/COUNTERD CLOCK SOURCE
{:lllm

Prescaling for TIMER2: more taps

Figure 18-12. Prescaler for Timer/Counter2

® T25 >

> Clear 10-BIT T/C PRESCALER
TOSCA —»
AS2 = b i i =
9

PSRASY 0
CSn0:CSn2 = 0 selects this: no clock out / l i
YyYyYvyy

CS20
cSs21
C522

TIMER/COUNTER2 CLOCK SOURCE
c:lkTE

Phys 124: Lecture 12

Wrap Times

is 8-bit (0-255)
— when prescaler = 1, reaches full count in
— when prescaler = 1024, full count in

is 16-bit (0-65536)
— when prescaler = 1, reaches full count in
— when prescaler = 1024, full count in

is 8-bit (0-255)
— when prescaler = 1, reaches full count in
— when prescaler = 1024, full count in

* These wrap times set limits on timed interrupts
— makes TIMER1 attractive, for its 16 bits

Timed Interrupts

e Really handy to have timed action, despite whatever
loop() is doing
— could check for serial or other input on a regular basis
— could read analog signal for regular sampling
— could produce custom signal at specific frequency

* |deais to set up timer so when it reaches specified
count, it creates an interrupt
— and also resets counter to zero so cycle begins anew

* Interrupt Service Routine (ISR) should be short and
sweet
— performs whatever periodic task you want

CAUTION

Messing with timer configurations can compromise
other timer-based functions like

— PWM outputs: analogWrite() (diff. pins =2 diff. timers)

— delay(Q) (uses , depends on counter wrap)

— millis(Q) and micros() (uses , dep. on wrap)
— Servo library (uses)

— tone() (uses)

— but delayMicroseconds() is okay (not timer-based)

— others?

Be cognizant of which timer each function uses
— see http://letsmakerobots.com/node/28278

http://letsmakerobots.com/node/28278

TIMER1 as Example

* Relevant registers for setting up timer:

: Timer/Counter1 Control Register A
e sets up mode of operation

: Timer/Counter1 Control Register B

* more mode control, and prescaler
: Output Compare Register 1 A (there’s also a B)

e value against which to compare

: Timerl Interrupt MaSK register
e selects which OCR to use

: Timer1 Interrupt Flag Register
contains info on tripped interrupt status
: actual 16-bit count

— TCNT1 and OCR1A break into, e.g., TCNT1H and TCNT1L
high and low bytes (registers) to accommodate 16 bits

Timer 1 Registers

Address Mame Bit7 Bit 6 Bit5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page
(0xBE) OCR1BH TimerCounter - Ouiput Compare Registar B High Byta 140
(OcBA) OCR1BL Timer'Counter! - Ouiput Compare Register B Low Byte 140
{Ox2g) OCH1AH TimerCounter! - Output Compare Register A High Byta 140
{OxBE) OCH1AL Timer'Counter1 - Output Compare Register A Low Byte 140
(0xE7) ICR1H Timer'Countar - Input Capiure Registar High Byt 140
(OxEE) ICRAL TimerCounter - Input Capiure Register Low Byis 140
(OxE5) TCNTIH TimewCounter - Counter Register High Byte 140
(OxB4) TCNTIL Timar/Counter - Counter Register Low Byte 140
(0x23) Resamnved - - - - - - - -

(x82) TCCRI1C FOC1A FOC1B - = = = - - 130
(DnB1) TCCRIB ICNCA ICES1 — WGEM13 WGM12 512 C511 G510 138
(0xB0) TCCR1A COM1A7 COM1AD COMIED COM1BD — - WGEM11 WGM10 136
{DwEF) TIMSK1 - - ICIE1 - - OCIE1B DCIE1A TOIE1 14
0x16 (0x36) TIFR1 - - ICF1 - - OCHB OCF1A TOW 141

* Note 16-bit quantities need two registers apiece

From short datasheet

— page reference is for full datasheet

— Hand L for high and low

TCCR1A

Bit i G B 4 3 2 1 0
o0 [TcomTAT | cowro | cowrer | commso -~ | wowrn | wawm] recaia
ReadWrite AW RW RW HW H R HW AW

Initial Value 0 0 0 0 0 0 0 0
e Upper bits are Compare Output Mode
— sets behavior of Compare Match condition
— can toggle, clear or set OCR bits on Compare Match condition
e Lower bits are 2/4 \Waveform Generation Mode controls
— other two are in

— 16 possibilities, the ones we’re likely interested in:

is Clear Timer on Compare match (so starts count all over)

Table 16-4. Waveform Generation Mode Bit Description'"!
WGM12 WGM11 WGM10 | Timer/Counter Mode of Update of | TOV1 Flag
Mode | WGM13 (CTC1) (PWM11) | (PWM10) | Operation TOP OCR1Xx at Set on
0 0 0 0 0 Normal OxFFFF Immediate | MAX
4 0 1 0 0 CTC OCR1A Immediate | MAX

TCCR1B

Bit T] 5 4 J 2 1 L]

(ox81) CTCNCT | ICEST || Wawns | wawis |_csie | s] CSwo] Tccmis
Read/Write RW RW R RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

 We've seen this before, for prescaling
— two bits for Input Capture (noise cancel and edge sense)
— has upper two bits of

— has three S (Clock Select) bits for prescaling, or ext. clock
Table 16-5. Clock Select Bit Description

CS12 CS11 CS510 Description
0 0 0 No clock source (Timer/Counter stopped).
0 0 1 clk,o/1 (No prescaling)
0 1 0 clk,o/8 (From prescaler)
0 1 1 clk,/64 (From prescaler)
1 0 0 clk,o/256 (From prescaler)
1 0 1 clk,o/1024 (From prescaler)
1 1 0 External clock source on T1 pin. Clock on falling edge.
1 1 1 External clock source on T1 pin. Clock on rising edge.

and

Bit T G 5 4 3 2 1]
(OwB9) OCR1A[15:8] OCR1AH
(0x88) OCRIAL
ReadMWrite R RAN RAN R RAW R'W RW RAW
Initial Value 0 0 0 0 0 0 0 0
* This is the value against which (L& H)is
compared (also a for alternate value)
Bit Fil G 7] 4 3 2 1 Q
(0x6F) - - [e | T GCEis | OCEIA | TOET] Tmsk:
ReadWrite B R AW R R AW AW AW
Initial Value 0 0 0 0 0 0 0 0

controls what generates interrupts
. Input Capture Interrupt Enable
/& Output Compare Match Interrupt Enable

: Timer Overflow Interrupt Enable: when counter
wraps

Finally,

Bit 7 i 5 4 3 2 1 0

oceoce) [l - L e |-] -] OCHB | OCFIA_|_ToV_] TR
R RW R RW

Vi
ReadWrite R R RAW AW
Initial Value 0 0 0 0 0 0 0 0

* Timerl Interrupt Flag Register

set if Internal Capture interrupt has occurred
set if Output Compare match occurs on
set if Output Compare match occurs on

set if OVerflow (wrap) occurs on counter (in certain
modes)

What Do We Do with this Power?

Let’s set up an interrupt timer to change the state of
an LED every 1.5 seconds

Need if we want to reach beyond 16 ms

— prescale by 1024, so frequency is 15625 ticks/sec

— thus 1.5 seconds corresponds to 23437 ticks

Set up registers:
to 0 (ignore COM1A; WGM10=WGM11=0 for CTC)

: set (for CTC), ,
to 23437 (=91, to 141)
. set

Make ISR function: ISR(TIMER1 COMPA vect){}

Example: Interrupt-Driven LED blink

const 1nt LED=13;
volatile Int state=0;

void setup({
pinMode(LED,OUTPUT) ; // set up LED for OUTPUT

}

TCCR1A = 0;
TCCR1B = 0;
TCCR1B |= (1 <<
TCCR1B |= (1 <<
TCCR1B |= (1 <<
OCR1A = 23437;
TIMSKL |= (1 <<
TCNT1 = 0;

void loop(){

}

delay(10000);

// use on-board LED

// clear ctrl register A
// clear ctrl register B
WGM12); // set bit for CTC mode
CS12); // set bit 2 of prescaler for 1024x
CS10); // set bit O of prescaler for 1024x
// set L & H bytes to 23437 (1.5 sec)
OCIE1A);// enable interrupt on OCR1A
// reset counter to zero

// provide lengthy task to interrupt

ISR(TIMER1_COMPA vect){ // results in interrupt vector In asm code

}

state += 1;
state %= 2;

// toggle state 1 --> 0; 0 --> 1

digitalWrite(LED,state); // export value to pin

Phys 124: Lecture 12

16

e The bit values WGM12, CS10, etc. are defined in,

e.g.,

Comments on Code

— in hardware/tools/avr/avr/include/avr/

— for example:

#define
#define
#define
#define
#define
#define
#define

#define
#define
#define

#define

CS10 O
CS11 1
CS12 2
WGM12 3
WGM13 4
ICES1 6
ICNC1 7

OCR1A _SFR_MEM16(0x88)
OCR1AL _SFR_MEM8(0x88)
OCR1AH _SFR_MEM8(0x89)

TIMER1 COMPA vect VECTOR(11) // Timerl Compare Match A

Phys 124: Lecture 12

17

Handling the Interrupt

e The command ISR(TIMER1 COMPA vect) creates a
“vector” pointing to the program memory location of the
piece that is meant to service the interrupt

— near beginning of assembly code listing:

2C: Oc 94 80 00 Jmp 0x100 ; Ox100 < vector 11>
— vector 11 is specially defined in ATMega 328 to correspond to a
comparison match to on timer 1

— when this particular sort of interrupt is encountered, it’ll jump
to program location 0x100, where:

e various working registers are PUSHed onto the STACK
— so the service function can use those registers for itself

e the interrupt service functions are performed
e the STACK contents are POPped back into registers
e the program counter is reloaded with the pre-interruption value

 The vector approach allows use of multiple interrupts

A Custom PWM

ISR(TIMERL _COMPA_vect)

{
iIT (state) OCR1A = 31248; // two seconds for OFF
else OCR1A = 15624; // one second for ON
state += 1;
state %= 2;
digitalWrite(LED,state);

>

e When time is up:
— if state == 1 (LED ON), set compare register to 2 seconds
— otherwise (LED OFF), set compare register to 1 second

* |n this way, you can customize a PWM-like signal
arbitrarily

— pretty sure this is what the Servo library is doing with

Nested Interrupts

* Imagine you want to respond to an external
interrupt, and perform some follow-up action 2
seconds later

— external interrupt arranged via attachInterrupt()

— within service function, set up counter for timed
interrupt
— in timer ISR, reset to normal mode

e disable interrupt condition, or you’ll keep coming back

References and Announcements

* For more on timer interrupts:

— http://www.instructables.com/id/Arduino-Timer-
Interrupts/

— http://letsmakerobots.com/node/28278

* Announcements
— Will review proposals over weekend
— Offer feedback, redirect, order parts (some) early in week

— New Lab times:
e TBA
e will have someone there, often two of us

— Light tracker demo/code/paragraphs due 2/14 or 2/15
— Midterm on 2/15

http://www.instructables.com/id/Arduino-Timer-Interrupts/
http://letsmakerobots.com/node/28278

	Physics 124: Lecture 12
	Timer Basics
	Prescaling & Frequency
	Prescaling Implementation on-chip
	Prescaling for TIMER2: more taps
	Wrap Times
	Timed Interrupts
	CAUTION
	TIMER1 as Example
	Timer 1 Registers
	TCCR1A
	TCCR1B
	OCR1A and TIMSK1
	Finally, TIFR1
	What Do We Do with this Power?
	Example: Interrupt-Driven LED blink
	Comments on Code
	Handling the Interrupt
	A Custom PWM
	Nested Interrupts
	References and Announcements

