
Physics 124: Lecture 12

Timers and Scheduled Interrupts

Timer Basics
• The Arduino Uno/Nano (ATMega 328) has three

timers available to it (Arduino Mega has 6)
– max frequency of each is 16 MHz, (as assembled)
– TIMER0 is an 8-bit timer, with 1, 8, 64, 256, 1024 prescaler

options
– TIMER1 is a 16-bit timer, with 1, 8, 64, 256, 1024 prescaler

options
– TIMER2 is an 8-bit timer with 1, 8, 32, 64, 128, 256, 1024

prescaler options
• These timers, recall, are used for PWM pins 5&6,

9&10, 3&11, respectively
– we saw that we could change the PWM frequency by

messing with the frequency prescaler values
– but PWM frequency is not the same as clock frequency

2Phys 124: Lecture 12

Prescaling & Frequency

• The Arduino boards run the ATMega chip at 16 MHz
– so a prescaler of 1 results in a 16 MHz clock
– a prescaler of 1024 results in 15.625 kHz

• Recall the PWM table:

– the top frequency is not 16 MHz, off by 256× and 512×
– this is because PWM is (presumably) counting a certain

number of clock cycles (256 or 512) between actions

Phys 124: Lecture 12 3

PWM pins Register scaler values frequencies (Hz)

5, 6 TCCR0B 1, 2, 3, 4, 5 62500, 7812, 977, 244, 61.0

9, 10 TCCR1B 1, 2, 3, 4, 5 31250, 3906, 488, 122, 30.5

3, 11 TCCR2B 1, 2, 3, 4, 5, 6, 7 31250, 3906, 977, 488, 244, 122, 30.5

Prescaling Implementation on-chip

• From ATMega full datasheet
– CS bits decide which tap to output (note orig. clock in pos. 1)

Phys 124: Lecture 12 4

Prescaling for TIMER2: more taps

Phys 124: Lecture 12 5

CSn0:CSn2 = 0 selects this: no clock out

Wrap Times

• TIMER0 is 8-bit (0−255)
– when prescaler = 1, reaches full count in 16 µs
– when prescaler = 1024, full count in 16.384 ms

• TIMER1 is 16-bit (0−65536)
– when prescaler = 1, reaches full count in 4.096 ms
– when prescaler = 1024, full count in 4.194 seconds

• TIMER2 is 8-bit (0−255)
– when prescaler = 1, reaches full count in 16 µs
– when prescaler = 1024, full count in 16.384 ms

• These wrap times set limits on timed interrupts
– makes TIMER1 attractive, for its 16 bits

Phys 124: Lecture 12 6

Timed Interrupts

• Really handy to have timed action, despite whatever
loop() is doing
– could check for serial or other input on a regular basis
– could read analog signal for regular sampling
– could produce custom signal at specific frequency

• Idea is to set up timer so when it reaches specified
count, it creates an interrupt
– and also resets counter to zero so cycle begins anew

• Interrupt Service Routine (ISR) should be short and
sweet
– performs whatever periodic task you want

Phys 124: Lecture 12 7

CAUTION

• Messing with timer configurations can compromise
other timer-based functions like
– PWM outputs: analogWrite() (diff. pins  diff. timers)
– delay() (uses timer0, depends on counter wrap)
– millis() and micros() (uses timer0, dep. on wrap)
– Servo library (uses timer1)
– tone() (uses timer2)

– but delayMicroseconds() is okay (not timer-based)
– others?

• Be cognizant of which timer each function uses
– see http://letsmakerobots.com/node/28278

Phys 124: Lecture 12 8

http://letsmakerobots.com/node/28278

TIMER1 as Example
• Relevant registers for setting up timer:

– TCCR1A: Timer/Counter1 Control Register A
• sets up mode of operation

– TCCR1B: Timer/Counter1 Control Register B
• more mode control, and prescaler

– OCR1A: Output Compare Register 1 A (there’s also a B)
• value against which to compare

– TIMSK1: Timer1 Interrupt MaSK register
• selects which OCR to use

– TIFR1: Timer1 Interrupt Flag Register
• contains info on tripped interrupt status

– TCNT1: actual 16-bit count
– TCNT1 and OCR1A break into, e.g., TCNT1H and TCNT1L

high and low bytes (registers) to accommodate 16 bits

Phys 124: Lecture 12 9

Timer 1 Registers

• From short datasheet
– page reference is for full datasheet

• Note 16-bit quantities need two registers apiece
– H and L for high and low

Phys 124: Lecture 12 10

TCCR1A

• Upper bits are Compare Output Mode
– sets behavior of Compare Match condition
– can toggle, clear or set OCR bits on Compare Match condition

• Lower bits are 2/4 Waveform Generation Mode controls
– other two are in TCCR1B
– 16 possibilities, the ones we’re likely interested in:

• CTC is Clear Timer on Compare match (so starts count all over)

Phys 124: Lecture 12 11

TCCR1B

• We’ve seen this before, for prescaling
– two bits for Input Capture (noise cancel and edge sense)
– has upper two bits of WGM1
– has three CS (Clock Select) bits for prescaling, or ext. clock

Phys 124: Lecture 12 12

OCR1A and TIMSK1

• This is the value against which TCNT1 (L & H) is
compared (also a OCR1B for alternate value)

• TIMSK1 controls what generates interrupts
– ICIE: Input Capture Interrupt Enable
– OCIE A/B Output Compare Match Interrupt Enable
– TOIE: Timer Overflow Interrupt Enable: when counter

wraps

Phys 124: Lecture 12 13

Finally, TIFR1

• Timer1 Interrupt Flag Register
– ICF1 set if Internal Capture interrupt has occurred
– OCF1B set if Output Compare match occurs on OCR1B
– OCF1A set if Output Compare match occurs on OCR1A
– TOV1 set if OVerflow (wrap) occurs on counter (in certain

modes)

Phys 124: Lecture 12 14

What Do We Do with this Power?

• Let’s set up an interrupt timer to change the state of
an LED every 1.5 seconds

• Need TIMER1 if we want to reach beyond 16 ms
– prescale by 1024, so frequency is 15625 ticks/sec
– thus 1.5 seconds corresponds to 23437 ticks

• Set up registers:
– TCCR1A to 0 (ignore COM1A; WGM10=WGM11=0 for CTC)
– TCCR1B: set WGM12 (for CTC), CS12, CS10
– OCR1A to 23437 (OCR1AH = 91, OCR1AL to 141)
– TIMSK1: set OCIE1A

• Make ISR function: ISR(TIMER1_COMPA_vect){}

Phys 124: Lecture 12 15

Example: Interrupt-Driven LED blink

Phys 124: Lecture 12 16

const int LED=13; // use on-board LED
volatile int state=0;

void setup(){
pinMode(LED,OUTPUT); // set up LED for OUTPUT
TCCR1A = 0; // clear ctrl register A
TCCR1B = 0; // clear ctrl register B
TCCR1B |= (1 << WGM12); // set bit for CTC mode
TCCR1B |= (1 << CS12); // set bit 2 of prescaler for 1024x
TCCR1B |= (1 << CS10); // set bit 0 of prescaler for 1024x
OCR1A = 23437; // set L & H bytes to 23437 (1.5 sec)
TIMSK1 |= (1 << OCIE1A);// enable interrupt on OCR1A
TCNT1 = 0; // reset counter to zero

}

void loop(){
delay(10000); // provide lengthy task to interrupt

}

ISR(TIMER1_COMPA_vect){ // results in interrupt vector in asm code
state += 1;
state %= 2; // toggle state 1 --> 0; 0 --> 1
digitalWrite(LED,state);// export value to pin

}

Comments on Code

• The bit values WGM12, CS10, etc. are defined in,
e.g., iom328p.h
– in hardware/tools/avr/avr/include/avr/
– for example:

Phys 124: Lecture 12 17

#define CS10 0
#define CS11 1
#define CS12 2
#define WGM12 3
#define WGM13 4
#define ICES1 6
#define ICNC1 7

#define OCR1A _SFR_MEM16(0x88)
#define OCR1AL _SFR_MEM8(0x88)
#define OCR1AH _SFR_MEM8(0x89)

#define TIMER1_COMPA_vect _VECTOR(11) // Timer1 Compare Match A

Handling the Interrupt
• The command ISR(TIMER1_COMPA_vect) creates a

“vector” pointing to the program memory location of the
piece that is meant to service the interrupt
– near beginning of assembly code listing:

– vector 11 is specially defined in ATMega 328 to correspond to a
comparison match to OCR1A on timer 1

– when this particular sort of interrupt is encountered, it’ll jump
to program location 0x100, where:

• various working registers are PUSHed onto the STACK
– so the service function can use those registers for itself

• the interrupt service functions are performed
• the STACK contents are POPped back into registers
• the program counter is reloaded with the pre-interruption value

• The vector approach allows use of multiple interrupts

Phys 124: Lecture 12 18

2c: 0c 94 80 00 jmp 0x100 ; 0x100 <__vector_11>

A Custom PWM

• When time is up:
– if state == 1 (LED ON), set compare register to 2 seconds
– otherwise (LED OFF), set compare register to 1 second

• In this way, you can customize a PWM-like signal
arbitrarily
– pretty sure this is what the Servo library is doing with

TIMER1
Phys 124: Lecture 12 19

ISR(TIMER1_COMPA_vect)
{
if (state) OCR1A = 31248; // two seconds for OFF
else OCR1A = 15624; // one second for ON
state += 1;
state %= 2;
digitalWrite(LED,state);

}

Nested Interrupts

• Imagine you want to respond to an external
interrupt, and perform some follow-up action 2
seconds later
– external interrupt arranged via attachInterrupt()
– within service function, set up TIMER1 counter for timed

interrupt
– in timer ISR, reset TIMER1 to normal mode

• disable interrupt condition, or you’ll keep coming back

Phys 124: Lecture 12 20

References and Announcements

• For more on timer interrupts:
– http://www.instructables.com/id/Arduino-Timer-

Interrupts/
– http://letsmakerobots.com/node/28278

• Announcements
– Will review proposals over weekend
– Offer feedback, redirect, order parts (some) early in week
– New Lab times:

• TBA
• will have someone there, often two of us

– Light tracker demo/code/paragraphs due 2/14 or 2/15
– Midterm on 2/15

Phys 124: Lecture 12 21

http://www.instructables.com/id/Arduino-Timer-Interrupts/
http://letsmakerobots.com/node/28278

	Physics 124: Lecture 12
	Timer Basics
	Prescaling & Frequency
	Prescaling Implementation on-chip
	Prescaling for TIMER2: more taps
	Wrap Times
	Timed Interrupts
	CAUTION
	TIMER1 as Example
	Timer 1 Registers
	TCCR1A
	TCCR1B
	OCR1A and TIMSK1
	Finally, TIFR1
	What Do We Do with this Power?
	Example: Interrupt-Driven LED blink
	Comments on Code
	Handling the Interrupt
	A Custom PWM
	Nested Interrupts
	References and Announcements

