
Physics	124:	Lecture	8

Odds	and	Ends
Binary/Hex/ASCII

Memory	&	Pointers	in	C
Decibels	&	dB	Scales
Coherent	Detection

Adapted	from	Tom	Murphy’s	lectures

Binary,	Hexadecimal	Numbers
• Computers	store	information	in	binary
– 1	or	0,	corresponding	to	VCC and	0	volts,	typically
– the	CC	subscript	originates	from	“collector”	of	transistor

• Become	familiar	with	binary	counting	sequence

2Phys	124:	Lecture	8

binary decimal hexadecimal

0000	0000 0 0x00

0000 0001 1 0x01

0000	0010 2 0x02

0000	0011 2+1	=	3 0x03

0000	0100 4 0x04

0000	0101 4+1 =	5 0x05

etc.

1111 1100 128+64+32+16+8+4 =	252 0xfc

1111	1101 128+64+32+16+8+4+1	=	253 0xfd

1111	1110 128+64+32+16+8+4+2	=	254 0xfe

1111	1111 128+64+32+16+8+4+2+1	=	255 0xff

Binary	to	Hex:	easy!
• Note	separation	of	previous	8-bit	(one-byte)	
numbers	into	two	4-bit	pieces	(nibbles)
– makes	expression	in	hex	(base-16;	4-bits)	natural

Phys	124:	Lecture	8 3

binary hexadecimal decimal

0000 0 0

0001 1 1

0010 2 2

0011 3 3

0100 4 4

0101 5 5

0110 6 6

0111 7 7

1000 8 8

1001 9 9

1010 A	(lower	case	fine) 10

1011 B	 11

1100 C 12

1101 D 13

1110 E 14

1111 F 15

0 1 2 3 4 5 6 7

0 NUL ^@ null	 (\0) DLE ^P SP space 0 @ P ` p

1 SOH ^A start	of	hdr DC1 ^Q ! 1 A Q a q

2 STX ^B start	text DC2 ^R “ 2 B R b r

3 ETX ^C end	text DC3 ^S # 3 C S c s

4 EOT ^D end	trans DC4 ^T $ 4 D T d t

5 ENQ ^E NAK ^U % 5 E U e u

6 ACK ^F acknowledge SYN ^V & 6 F V f v

7 BEL ^G bell ETB ^W ‘ 7 G W g w

8 BS ^H backspace CAN ^X (8 H X h x

9 HT ^I horiz.	tab	(\t) EM ^Y) 9 I Y i y

A LF ^J linefeed	 (\r) SUB ^Z * : J Z j z

B VT ^K vertical	tab ESC escape + ; K [k {

C FF ^L form	feed FS , < L \ l |

D CR ^M carriage ret	(\n) GS - = M] m }

E SO ^N RS . > N ^ n ~

F SI ^O US / ? O _ o DEL
Phys	124:	Lecture	8 4

first	hex	digit
se
co
nd

	h
ex
	d
ig
it

ASCII	Table	 in	Hex

ASCII	in	Hex

• Note	the	patterns	and	conveniences	in	the	ASCII	
table
– 0	thru	9	is	hex	0x30	to	0x39	(just	add	0x30)
– A-Z	parallels	a-z;	just	add	0x20

• starts	at	0x41	and	0x61,	so	H	is	8th letter,	 is	0x48,	etc.

– the	first	32	characters	are	control	characters,	often	
represented	as	Ctrl-C,	denoted	̂ C,	for	instance
• associated	control	characters	mirror	0x40	to	0x5F
• put	common	control	characters	 in	red;	useful	 to	know	in	some	
primitive	environments

Phys	124:	Lecture	8 5

Two’s	Complement
• Unsigned	are	direct	binary	representation
• Signed	integers	usually	follow	“two’s	complement”

– rule:	to	get	neg.	number,	 flip	all	bits	and	add	one
• example:	-2:	0000	0010	à 1111	1101	+	1	=	1111	1110
• Also	called	“bias”,	2" =256	for	single	precision,	2$% for	double	precision

– adding	pos.	&	neg.	à 0000	0000	(ignore	overflow	 bit)
Phys	124:	Lecture	8 6

binary hex unsigned 2’s	complement

0000	0000 0x00 0 0

0000	0001 0x01 1 1

0000	0010 0x02 2 2

0111	1111 0x7F 127 127

1000	0000 0x80 128 -128

1000 0001 0x81 129 -127

1111	1110 0xFE 254 -2

1111	1111 0xFF 255 -1

Floating	Point	Numbers
• Most	standard	is	IEEE	format

– http://en.wikipedia.org/wiki/IEEE_754-1985
– https://en.wikipedia.org/wiki/IEEE_floating_point#IEEE_754-2008

𝟎. 𝟏𝟓𝟔𝟐𝟓$, = 𝟎. 𝟎𝟎𝟏𝟎𝟏- =	2./ + 2.1 = +𝟏.𝟎𝟏-×2./
• Three	parts:								sign,	 			mantissa,	 		 exponent

– sign:	0	is	positive,	1	is	negative	;	mantissa,	1	is	implied
– exponent:	bias	by	127,	i.e.,	127-3-124	 =	0b01111100	
– single-precision	(float)	has	32	bits	(1,	8,	23,	resp.)

• 7	digits,	10±38: log(10)/log(2)	=	3.32,	so	223 ≈	107;	±127/3.32	≈	38	
– double	precision	(double)	has	64	bits	(1,	11,	52,	resp.)

• 16	digits,	10±308

• The	actual	convention	 is	not	critical	for	us	to	understand,	as	much	as:
– limitations	to	finite	representation
– space	allocation	in	memory:	just	32	or	64	bits	of	1’s	&	0’s

Phys 124:	Lecture	8 7

Phys	124:	Lecture	8 8

Arrays	&	Storage	in	C

• We	can	hold	more	than	just	one	value	in	a	variable
– but	the	program	needs	 to	know	how	many	places	to	save	in	

memory
• Examples:

– we	can	either	 say	how	many	elements	 to	allow	and	leave	
them	unset;	say	how	many	elements	 and	initialize	 all	
elements	 to	zero;	 leave	out	the	number	of	elements	 and	
specify	 explicitly;	 specify	number	of	elements	 and	contents

– character	arrays	are	strings
– strings	must	end	in	‘\0’ to	signal	the	end
– must	allow	 room:	char name[4]=“Bob”

• fourth	element	is	‘\0’ by	default

int i[8], j[8]={0}, k[]={9,8,6,5,4,3,2,1,0};
double x[10], y[10000]={0.0}, z[2]={1.0,3.0};
char name[20], state[]=“California”;

Phys	124:	Lecture	8 9

Indexing	Arrays
int i,j[8]={0},k[]={2,4,6,8,1,3,5,7};
double x[8]={0.0},y[2]={1.0,3.0},z[8];
char name[20],state[]="California";

for (i=0; i<8; i++)
{
z[i] = 0.0;
printf(”j[%d] = %d, k[%d] = %d\n",i,j[i],i,k[i]);

}
name[0]='T';
name[1]='o';
name[2]='m';
name[3] = '\0';
printf("%s starts with %c and lives in %s\n",name,name[0],state);

• Index	array	integers,	 starting	with	zero
• Sometimes	 initialize	in	loop	(z[] above)
• String	assignment	awkward	outside	of	declaration	 line

– #include <string.h> provides	“useful”	string	routines
• done	automatically	 in	Arduino,	but	also	String	type	makes	many	things	easier

Phys	124:	Lecture	8 10

Memory	Allocation	in	Arrays
• state[]=“California”;→

• name[11]=“Bob”;→

– empty	 spaces	at	the	end	could	contain	any	random	garbage

• int i[] = {9,8,7,6,5,4,3,2};→

– indexing	i[8] is	out	of	bounds,	and	will	either	 cause	a	
segmentation	 fault	(if	writing),	or	return	garbage	(if	reading)

C a l i f o r n i a \0

B o b \0

9 8 7 6 5 4 3 2

each	block	is	8-bit	char

each	block	is	16	or	32-bit	int

Phys	124:	Lecture	8 11

Multi-Dimensional	Arrays

• C	is	a	row-major	language:	the	first	index	
describes	which	row	(not	column),	and	arranged	
in	memory	row-by-row
– memory	is,	after	all, arranged	one-dimensionally

• Have	the	option	of	treating	a	2-D	array	as	1-D
– arr[5] = arr[1][1] = 3

• Can	have	arrays	of	2,	3,	4,	…	dimensions

int i,j,arr[2][4];

for (i=0; i<2; i++){
for (j=0; j<4; j++){
arr[i][j] = 4+j-2*i;

}
} 4 5 6 7 2 3 4 5

4 5 6 7

2 3 4 5

0

1

0 1 2 3

i

j

in	memory	space:

Phys	124:	Lecture	8 12

Arrays	and	functions
• How	to	pass	arrays	into	and	out	of	functions?
• An	array	in	C	is	actually	handled	as	a	“pointer”

– a	pointer	 is	a	direction	to	a	place	in	memory
• A	pointer	to	a	variable’s	address	is	given	by	the	&	symbol

– you	may	remember	 this	from	scanf functions
• For	an	array,	the	name	is	already	an	address

– because	 it’s	a	block	of	memory,	 the	name	by	itself	doesn’t	 contain	a	
unique	value

– instead,	 the	name	returns	 the	address	of	the	first	element
– if	we	have	int arr[i][j];

• arr and	&arr[0] and	&arr[0][0] mean	the	same	thing:	the	address	of	the	
first	element

• By	passing	an	address	to	a	function,	it	can	manipulate	the	
contents	of	memory	directly,	without	having	to	pass	bulky	
objects	back	and	forth	explicitly

Phys	124:	Lecture	8 13

Example:	3x3	matrix	multiplication

void mm3x3(double a[], double b[], double c[])

// Takes two (3x3 matrix) pointers, a, b, stored in 1-d arrays nine
// elements long (row major, such that elements 0,1,2 go across a
// row, and 0,3,6 go down a column), and multiplies a*b = c.
// Dimensionality and encoding of the arguments are assumed.
{

double *cptr; // define a pointer variable to double
int i,j;

cptr = c; // without *, it’s address; point to addr. for c

for (i=0; i<3; i++){
for (j=0; j<3; j++){

*cptr++ = a[3*i]*b[j] + a[3*i+1]*b[j+3] + a[3*i+2]*b[j+6];
// calc value to stick in current cptr location, then
// increment the value for cptr to point to next element
// * gets at contents

}
}

}

Phys	124:	Lecture	8 14

mm3x3,	expanded

• The	function	is	basically	doing	the	following:

– which	you	could	confirm	is	the	proper	set	of	operations	for	
multiplying	out	3×3	matrices

*cptr++ = a[0]*b[0] + a[1]*b[3] + a[2]*b[6];
*cptr++ = a[0]*b[1] + a[1]*b[4] + a[2]*b[7];
*cptr++ = a[0]*b[2] + a[1]*b[5] + a[2]*b[8];

*cptr++ = a[3]*b[0] + a[4]*b[3] + a[5]*b[6];
*cptr++ = a[3]*b[1] + a[4]*b[4] + a[5]*b[7];
*cptr++ = a[3]*b[2] + a[4]*b[5] + a[5]*b[8];

*cptr++ = a[6]*b[0] + a[7]*b[3] + a[8]*b[6];
*cptr++ = a[6]*b[1] + a[7]*b[4] + a[8]*b[7];
*cptr++ = a[6]*b[2] + a[7]*b[5] + a[8]*b[8];

Phys	124:	Lecture	8 15

Notes	on	mm3x3
• The	function	is constructed	to	deal	with	1-d	instead	
of	2-d	arrays
– 9	elements	instead	of	3×3
– it	could	have	been	done	either	way

• There	is	a	pointer,	*cptrbeing	used
– by	specifying	cptr as	a	double	pointer,	and	assigning	its	
address	(just	cptr)	to	c,	we	can	stock	the	memory	by	using	
“pointer	math”

– cptr is	the	address;	*cptr is	the	value	at	that	address
– just	like	&x_val is	an	address,	while	x_val contains	the	
value

– cptr++ bumps	the	address	by	the	amount	appropriate	to	
that	particular	data	type	(double	prec.	here),	called	“pointer	math”

– *cptr++ = value; assigns	value	to	*cptr,	then	advances	
the	cptr count

Phys	124:	Lecture	8 16

Using	mm3x3

• passing	just	the	names	(addresses)	of	the	arrays
– filling	out	a and	b, but	just	making	 space	for	c
– note	function	declaration	before	main

#include <stdio.h>

void mm3x3(double a[], double b[], double c[]);

int main()
{

double a[]={1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0};
double b[]={1.0, 2.0, 3.0, 4.0, 5.0, 4.0, 3.0, 2.0, 1.0};
double c[9];

mm3x3(a,b,c);

printf("c = %f %f %f\n",c[0],c[1],c[2]);
printf(" %f %f %f\n",c[3],c[4],c[5]);
printf(" %f %f %f\n",c[6],c[7],c[8]);

return 0;
}

Phys	124:	Lecture	8 17

double a[3][3]={{1.0, 2.0, 3.0},
{4.0, 5.0, 6.0},
{7.0, 8.0, 9.0}};

double b[3][3]={{1.0, 2.0, 3.0},
{4.0, 5.0, 4.0},
{3.0, 2.0, 1.0}};

double c[3][3];

mm3x3(a,b,c);

Another	way	to	skin	the	cat

• Here,	we	define	the	arrays	as	2-d,	knowing	that	in	
memory	they	will	still	be	1-d
– we	will	get	compiler	warnings,	but	the	thing	will	still	work
– not	a	recommended	 approach,	just	presented	here	for	

educational	 purposes
– Note	that	we	could	replace	a with	&a[0][0] in	the	

function	call,	and	the	same	 for	the	others,	and	get	no	
compiler	 errors

Decibels

• Sound	is	measured	in	decibels,	or	dB
– as	are	many	radio-frequency	(RF)	applications

• Logarithmic	scale
– common	feature	is	that	every	10	dB	is	a	factor	of	10	in	
power/intensity

– other	handy	metrics
• 3	dB	is	2×
• 7	dB	is	5×
• obviously	piling	2× and	5× is	10×,	which	is	10	dB	=	3	dB	+	7	dB

– decibels	thus	combine	like	logarithms:	addition	represents	
multiplicative	factors

Phys	124:	Lecture	8 18

Phys	124:	Lecture	8 19

Sound	Intensity

• Sound	requires	energy	(pushing	atoms/molecules	
through	a	distance),	and	therefore	a	power

• Sound	is	characterized	in	decibels	(dB),	according	to:
– sound	level	 =	10×log(I/I0)		=		20×log(P/P0)		dB
– I0 =	10−12 W/m2 is	the	threshold	power	intensity	 (0	dB)
– P0 =	2×10−5 N/m2 is	the	threshold	pressure	 (0	dB)

• atmospheric	pressure	is	about	105 N/m2

• 20 out	front	accounts	for	intensity	going	like	P2

• Examples:
– 60	dB	(conversation) means	 log(I/I0)	=	6,	so	I =	10−6W/m2

• and	log(P/P0)	=	3,	so	P =	2×10−2 N/m2 =	0.0000002	atmosphere!!
– 120	dB	(pain	threshold) means	 log	(I/I0)	=	12,	so	I =	1	W/m2

• and	log(P/P0)	=	6,	so	P =	20	N/m2 =	0.0002	atmosphere
– 10	dB	(barely	detectable) means	 log(I/I0)	=	1,	so	I =	10−11W/m2

• and	log(P/P0)	=	0.5,	so	P ≈ 6×10−5 N/m2

Phys	124:	Lecture	8 20

Sound	hitting	your	eardrum
• Pressure	variations	displace	membrane	(eardrum,	
microphone)	which	can	be	used	to	measure	sound
– my	speaking	voice	is	moving	your	eardrum	by	a	mere	
1.5×10-4 mm	=	150	nm	=	1/4	wavelength	of	visible	light!

– threshold	of	hearing	detects	5×10-8 mm	motion,	one-half	
the	diameter	of	a	single	atom!!!

– pain	threshold	corresponds	to	0.05	mm	displacement
• Ear	ignores	changes	slower	than	20	Hz
– so	though	pressure	changes	even	as	you	climb	stairs,	it	is	
too	slow	to	perceive	as	sound

• Eardrum	can’t	be	wiggled	faster	than	about	20	kHz
– just	like	trying	to	wiggle	resonant	system	too	fast	produces	
no	significant	motion

A-weighting:	account	for	relative	loudness

Phys	124:	Lecture	8 21

• Related	to	measurement	of	sound	pressure	level
• Defined	in	standard	IEC	61672:2003,	for	environmental	and	

industrial	noise
• Accounts	for	low	sensitivity	of	human	ear	at	low	frequencies,					

reduces	importance	of	low	freq.	in	human	impact	assessments
Other	weightings	 available:	B,	C,	D

Phys	124:	Lecture	8 22http://www.dot.ca.gov/dist2/projects/sixer/loud.pdf

Sound	scales	not	for	humans
Noise	Criterion	(NC)

Phys	124:	Lecture	8 23

dB	Scales
• In	the	radio-frequency	(RF)	world,	dB	is	used	several	ways

– dB	is	a	relative	 scale:	a	ratio:	often	characterizing	a	gain	or	loss
• +3	dB	means	a	factor	of	two	more
• −17	dB	means	a	factor	of	50	loss,	or	2%	throughput

– dBm is	an	absolute	 scale,	in	milliwatts:	 10×log(P/1	mW)
• 0	dBm is	1	mW,	a	30	dBm signal	is	1 W
• 36	dBm is	4	W	(note	6	dB	is	two	3	dB,	each	a	factor	of	2	à 4×)
• −27	dBm is	2	µW

– dBc is	signal	strength	relative	 to	the	carrier
• often	characterizes	distortion	from	sinusoid
• −85	dBc means	any	distortions	are	almost	nine	orders-of-magnitude	
weaker	than	the	main	sinusoidal	“carrier”

• Voltage	is	the	equivalent	of	sound	pressure,	an	amplitude:	
10×log 89:;<=

89:;<>
= 20×log ?9@ABC;=

?9@ABC;>
dB

Phys	124:	Lecture	8 24

Coherent	Detection

• Sometimes	fighting	to	discern	signal	against	
background	noise
– photogate in	bright	setting,	for	instance

• One	approach	is	coherent	detection
– modulate	signal	at	known	phase,	in	ON/OFF	pattern	at	
50%	duty	cycle

– accumulate	(add)	in-phase	parts,	while	subtracting	out-of-
phase	parts

– have	integrator	perform	accumulation,	or	try	in	software
• but	if	background	is	noisy	in	addition	to	high,	integration	better

– basically	background	subtraction
– gain	more	the	greater	the	number	of	cycles	integrated

Phys	124:	Lecture	8 25

Raw	Signal,	Background,	and	Noise

Phys	124:	Lecture	8 26

Modulated	Signal;	still	hard	to	discern

Phys	124:	Lecture	8 27

Integration,	subtracting	“OFF”	portions

Phys	124:	Lecture	8 28

Expressed	in	Electronics

Phys	124:	Lecture	8 29

first	op-amp	just	inverting;	second	sums	two	inputs,	only	one	on	at	a	time
has	effect	of	adding	parts	when	Ref	=	+1,	subtracting	where	Ref	=	-1

clears	“memory”	on	timescale	 of	τint =	RintC
could	also	conceive	of	performing	math	in	software

Lock-in	detection

Phys	124:	Lecture	8 30

https://www.zhinst.com/applications/principles-of-lock-in-detection

Announcements

• Project	Proposals	due	in	two	weeks	Friday,	Nov.	3
• Lab	3	due	next	week	Mon/Tue	(10/23,10/24)
• Lab	4	due	in	2+	weeks	Tue/Wed	(11/6,	11/7)
• Midterm	Wed.	11/8

Phys	124:	Lecture	8 31

