Physics 124: Lecture 11

Adapted from T. Murphy’s slides

Behind the C code (or sketch)

 C provides a somewhat human-readable interface
— but it gets compiled into machine instruction set

— ultimately just binary (or hex) instructions loaded into the
ATMega program memory (flash)

— even so, each instruction can be expressed in human terms

— called “assembly language” or “machine code”

 Assembly instruction set is very low level

— dealing with the processing of one data parcel (byte, usu.)
at a time

— a C command may break out into a handful of machine
instructions

Viewing assembly produced by Arduino

e Look within the Arduino install directory:
— On a Mac:

» [Applications/Arduino.app/Contents/Resources/Java/

RXTXcomm. jar

core.jar
ecj.-jar

examples/
hardware/

jna.jar

lib/

libquaqua. jnilib
libquaqua64. jnilib

libraries/

quaqua. jar
reference/

tools/

librxtxSerial . jnilib

pde.jar

revisions.txt

— we looked before in hardware/Zarduino/ for code details

— in hardware/Zarduino/tools/avr/bin/ are some utilities

avarice*
avr-addr2line*
avr-ar*
avr-as*
avr-c++*
avr-c++filt*
avr-cpp*
avr-g++*

avr-gcc*
avr-gcc-3.4.6*
avr-gcc-4.3.2*
avr-gcc-select
avr-gccbug*
avr-gcov*
avr-gdb*
avr-gdbtui*

avr-gprof*
avr-help*
avr-info*

* avr-1d*
avr-man*
avr-nm*
avr-objcopy*
avr-objdump*
Phys 124: Lecture 11

avr-project*
avr-ranlib*
avr-readel f*
avr-size*
avr-strings*
avr-strip*
avrdude*
1ce-gdb*

ice-Insight*
kill-avarice*
1 1busb-config*
make*
simulavr*
simulavr-disp*
simulavr-vcd*
start-avarice*
3

AVR, Dude?

 AVR(isc?) is an 8-bit architecture developed by Atmel
— http://en.wikipedia.org/wiki/Atmel AVR
— used by ATMega chips, on which Arduino is based

 Note in particular

4

— the latter mostly because it has a cool name (it can be
used to shove machine code (.hex) onto chip)
e DUDE means Downloader UploaDEr (a stretch)
e Running avr-objdump on .o or .elf files in your
local Arduino/Zbui 1d/ directory disassembles code
— the —d flag produces straight code

— the -S flag intersperses with commented C-like code

http://en.wikipedia.org/wiki/Atmel_AVR

avr-objdump (man page)

e avr-objdump - display information from object files.

e Options considered here:
— [-d|--disassemble]
— [-S|--source]

e avr-objdump displays information about one or more
object files. The options control what particular
information to display. This information is mostly useful
to programmers who are working on the compilation
tools, as opposed to programmers who just want their
program to compile and work.

objfile... are the object files to be examined. When
you specify archives, objdump shows information on each
of the member object files.

Use .o or .elf?

e Can dump either stuff in the .o file or the .elf file

— the .o file contains just the pieces you programmed

e thus leaves out the code behind built-in functions
— the .elf file contains the rest of the ATMega interface
— so .o output will be smaller, but lack full context

Example: Simple Blink program
const 1nt LED=13;

void setup()

1
pinMode(LED,OUTPUT);

}

void loop()

1
digitalWrite(LED,HIGH);
delay(250);
digitalWrite(LED,LOW);
delay(500);

}

 Look how small it is, when written in high-level
human terms!

Compiled, in build directory

e Compilation produces following in IDE message box:
— Binary sketch size: 1,076 bytes (of a 30,720 byte maximum)

e Listing of build directory:

-rw-r--r-- 1
-rwW-r—--r—--
-rwW-r—--r—--
—FWXFr-Xr-X
-rwW-r—--r--
-rw-r--r—--

PR R PR R

tmurphy
tmurphy
tmurphy
tmurphy
tmurphy
tmurphy

tmurphy
tmurphy
tmurphy
tmurphy
tmurphy
tmurphy

239
1062
13
14061
3049
3892

note file size in bytes J
.d file is list of header files
.eep is about EEPROM data
.0 and .elf are compiled

.hex is what is sent to chip

Feb
Feb
Feb
Feb
Feb
Feb

Wwwwwow

08:
08:
08:
08:
08:
08:

42
42
42
42
42
42

simple blink.
simple blink.
simple blink.
simple blink.
simple blink.
simple blink.

Ccpp

cpp -

Ccpp
Cpp
Cpp

cpp -

* note that the ASCII representation is at least 2x larger than binary
version (e.g., 9C takes 2 bytes to write in ASCII, 1 byte in memory)

.eep
el f*
-hex

simple blink.cpp

e Basically what’s in the sketch, with some wrapping

#include "Arduino.h'
void setup();

void loop();

const 1nt LED=13;

void setup()

{
pinMode(LED,OUTPUT);

}

void loop()

{
digitalWrite(LED,HIGH);
delay(250);
digitalWrite(LED,LOW);
delay(500);

¥

Phys 124: Lecture 11

avr-objdump -don .o file

simple blink.cpp.o: file format elf32-avr

Disassembly of section .text.loop:

pgm hex cmd arguments ; comments
00000000 <loop>:

0: 8d el Idi r24, 0x0D ; 13
2: 61 eO Idi r22, 0x01 1
4: Oe 94 00 00 call 0] ; OxO <loop>
8: 6a ef Idi r22, OxFA ; 250
a: 70 €0 Idi r23, 0x00 ; O
C: 80 el Idi r24, 0x00 ; O
e: 90 e0 Idi r25, 0x00 ; O
10: Oe 94 00 00 call 0] ; 0xO <loop>
14: 8d el Idi r24, 0x0D > 13
16: 60 €0 Idi r22, 0x00 ; O
18: Oe 94 00 00 call 0] ; 0xO <loop>

e Just the start of the 32-line file

e Entries are:

— program memory address; hex command; assembly command,
arguments, comments

Phys 124: Lecture 11

avr-objdump -Son .o file

00000000 <loop>:

pinMode(LED,OUTPUT) ;
}
void loop()
{
digitalWrite(LED,HIGH);
0: 8d e0 Idi
2: 61 e0 Idi
4: Oe 94 00 00 call
delay(250);
8: 6a ef 1di
a: 70 e0 I1di
C: 80 eO Idi
e: 90 eO0 Idi
10: Oe 94 00 00 call
digitalWrite(LED,LOW);
14: 8d eO0 Idi
16: 60 e0 Idi
18: Oe 94 00 00 call

r24,
r22,
0]

r22,
r23,
r24,
r25,
0

r24,
r22,
0

Ox0D
Ox01

OxFA
0x00
0x00
0x00

Ox0D
0x00

;13
. |

; Ox0 <loop>

. 250
0]
0]
0]

; Ox0 <loop>

13
- 0

; Ox0 <loop>

e Now has C code interspersed; 49 lines in file

— but does not make sense on its own; cal l references wrong

Phys 124: Lecture 11

11

avr-objdump -don .elffile

00000100 <loop>:

100:

102:
104 :
108:
10a:
10c:
10e:
110:
114:
116:
118:

8d
61
Oe
6a
70
80
90
Oe
8d
60
Oe

e0
e0
94 b5 01
ef
e0
e0
e0
94 e2 00
e0
e0
94 b5 01

1di
1di
call
1di
1di
1di
1di
call
1di
1di
call

r24, 0Ox0D ; 13

r22, 0x01 ;1

Ox36a ; Ox36a <digitalWrite>
r22, OXxFA . 250

r23, 0x00 > 0

r24, 0x00 . 0

r25, 0x00 > 0

Ox1lc4 ; Ox1lc4 <delay>

r24, 0x0D ; 13

r22, 0x00 . 0

Ox36a ; Ox36a <digitalWrite>

e Now loop starts at memory location (program
counter) 100 (hex)

— and calls to other routines no longer just address 0

— note useful comments for writes and delays

— note also extensive use of registers r22, r24, etc.

Phys 124: Lecture 11 12

avr-objdump -Son .elffile

void loop()

{
digitalWrite(LED,HIGH);
100: 8d e0 Idi r24, 0xO0D ; 13
102: 61 e0 Idi r22, 0x01 ;1
104: Oe 94 b5 01 call Ox36a ; Ox36a <digitalWrite>
delay(250);
108: 6a ef Idi r22, OxFA ; 250
10a: 70 e0 Idi r23, 0x00 ; O
10c: 80 e0 Idi r24, 0x00 ; O
10e: 90 eO0 Idi r25, 0x00 ; O
110: Oe 94 e2 00 call Ox1lc4 ; Ox1lc4 <delay>
digitalWrite(LED,LOW);
114: 8d e0 Idi r24, 0Ox0D ; 13
116: 60 eO Idi r22, 0x00 ; O
118: Oe 94 b5 01 call Ox36a ; Ox36a <digitalWrite>
delay(500);
1llc: 64 ef Idi r22, OxF4 , 244
lle: 71 €0 Idi r23, 0x01 ;1

e Embedded C code
— note 500 delay is 1x256 + 244 (Ox01F4)

Phys 124: Lecture 11

A look at .hex file

2100100008DEO61EOOE94B5016AEF70EO80EO90EO7O
2100110000E94E2008DEOG6OEOOE94B50164EF/1EOB2
21001200080EO90EOOE94E20008958DEO61EOOE948E

e Snippet of ASCII .hex file around sections displayed on

previous four slides

— first: how many bytes in line (2 hex characters/byte)
— next, program counter for 1stinstr. in line: 0100, 0110, 0120

— then 00, then, instructions, like: 8DEO, 61E0, OES4B501
 just contents of assembly, in hex terms

— checksum at end

100:
102:
104 :
108:
10a:
10c:
10e:
110:

8d
61
Oe
6a
70
80
90
Oe

e0
e0
94 b5 01
ef
e0
e0
e0
94 e2 00

Idi r24, 0Ox0D > 13

1di r22, 0Ox01 . |

call Ox36a ; Ox36a <digitalWrite>
1di r22, OxFA > 250

Idi r23, 0x00 . 0

Idi r24, 0x00 . 0

1di r25, 0x00 o

call Ox1lc4 ; Ox1lc4 <delay>

Phys 124: Lecture 11 14

Counting bytes

e The end of the hex file looks like:

:10042000DOEOOE9480002097E1F30E940000F9CFO5
:04043000F894FFCF6E
00000001FF

 And the corresponding assembly:

42a: Oe 94 00 00 call 0] ; OxO < vectors>

42e: 9 cf rymp .-14 ; Ox422 <main+0x10>
00000430 < exit>:

430: 8 94 cli

00000432 < stop_ program>:

432: f cf rymp =2 ; Ox432 < stop program>

— last 4 bytes on penultimate line; note 04 leader (4 bytes)
e normal (full) line has 16 bytes (hex 0x10)
» 67 full-size lines is 1072 bytes, plus four at end = 1076 bytes
e Recall: Binary sketch size: 1,076 bytes (of a 30,720 byte maximum)

e Last line in hex file likely a standard ending sequence

Great, but what does it mean?

e We've seen some patterns, and seen assembly code
— but what do we make of it?

e See Chapter 32 of ATMega datasheet, pp. 537-539
— or http://en.wikipedia.org/wiki/Atmel AVR instruction set

e But won’t learn without a lot of effort

e Some examples:
— in the copied code, we really only saw LDI and CALL

Mnemonics Operands Description Operation Flags #Clocks

LD Ad, K Load Immediate Bd «— K None 1

CALLM k Direct Subrouting Call PC+«—k None 4

— LDI puts contents of byte K (2"9 arg.) into register Rd (1%t arg.)

— CALL loads K (only arg.) into PC (program counter)
e so next operation takes place there; saves place for call origin

— note info on how many clock cycles are taken

http://en.wikipedia.org/wiki/Atmel_AVR_instruction_set

Inserting Assembly Code into C Sketch

 The Arduino interface provides a means to do this
— via asm() command

 Can send digital values directly to port

 Why would you do this?

— consider that digitalWrite() takes > 60 clock cycles
 maybe you need faster action
* maybe you need several pins to come on simultaneously

— might need delays shorter than 1 us
e insert nop (no operation) commands, taking 1 cycle each

— might need to squeeze code to fit into flash memory
e direct low-level control without bells & whistles is more compact

* Why wouldn’t you do this?
— lose portability, harder to understand code, mistake prone

Direct Port Manipulation

 Can actually do this going all the way to
assembly language

— see http://arduino.cc/en/Reference/PortManipulation

— PORTD maps to pins 0-7 on Arduino
— PORTB (0:5) maps to pins 8-13 on Arduino
— PORTC (0:5) maps to analog pins 0-5

— Each (D/B/C) has three registers to access; e.g., for port D:

: direction: 11010010 has pins 1, 4, 6, 7 as output
— must keep pin 0 as input, pin 1 as output if Serial is used

: read/write values (can probe PORTD as well as set it)
: read values (cannot set it)

— So DDR replaces pinMode ()
— writing PORTD = B01010010 puts pins 6, 4, 1 HIGH at once

http://arduino.cc/en/Reference/PortManipulation

Example: Hard-coded Outputs

void setup()

{
DDRD |= B0O0010010;

}

void loop()

{
PORTD |= B0O0010000;

delay(250);
PORTD &= B11101111;
delay(500);

by
e Serial-friendly, and sets pin 4 (D:4) as output

e Uses bitwise logic AND, OR, and NOT to set pin values
— virtue of this is that it leaves other pin values undisturbed

e Sketch compiles to 676 bytes
— compare to 1076 using Arduino commands

More Flexible Coding of Same

const 1Int OUTBIT=4;

void setup()

{
DDRD = BO0O000010 | (1 << OUTBIT);
+
void loop()
{
PORTD |= (1 << OUTBIT);
delay(250);
PORTD &= ~(1 << OUTBIT);
delay(500);
+

e Again sets port D to be Serial-friendly and pin 4 as output
e Still 676 bytes (no penalty for flexibility)

— compiles to same actions, but now easier to modify
— compiles to 474 bytes without delay functions

— adding back pinMode () - 896 bytes

— then restoring digitalWrite() = 1076 bytes

Resulting Assembly Code

0001 0010
DDRD = B0O0000010 | (1 << OUTPIN); K/
a6: 82 el 1di r24, 0x12 - 18
a8: 8a b9 out Ox0a, r24 - 10
PORTD |= (1 << OUTPIN);
ac: 5c 9a sbi Ox0Ob, 4 ; 11
PORTD &= ~(1 << OUTPIN);
ba: 5c 98 cbi OxOb, 4 ; 11

e Tiny commands
load (
write r24 out (
set 4t bit (

clear 4t bit (

) BOO010010 (0x12) into r24 (register 24)

) to port Ox0a (see ATMega register summary)

) of register OxOb (write HIGH to that pin)

) of register OxOb (write LOW to that pin)

What’s with addresses Ox0a and Ox0b?

Address Name Bit7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page
0x08 (0x2B) PORTD PORTD7 PORTD6 PORTDS PORTD4 PORTDZ PORTDz PORTD1 PORTDO 95
0xDA (0x24) DDRD DDD7 DDD6 DDDS DDD4 DDOa DDD2 DDD1 DDDo 95
0x09 (0x29) PIND PIND7 PIND& PINDS PIND4 PIND3 PIND2 PIND1 PINDO 95
0x08 (0x28) PORTC - PORTCS PORTCS PORTC4 PORTC3 PORTC2 PORTC1 PORTCOD 94
0x07 (0x27) DDRC - DDCE DDCS DDC4 DDC3 DDC2 DDCH DDCo 94
0x06 (0x26) PING - PINCE PINCS5 PINC4 PING3 PINC2 PINC1 PINCO 94
0x05 (0x25) PORTB PORTET? PORTEG PORTES PORTE4 PORTE3 PORTB2 PORTE1 PORTBD 94
0x04 (0x24) DDRB DODB7 DDB& DDBS DDB4 DDB3 DDB2 DODB1 DDBo 94
0x03 (0x23) PINE PINE7 PINES PINES PINE4 PINB3 PINB2 PINE1 PINED M

e From the ATMega short datasheet
— we see 0x0a is DDRD
— and 0x0b is PORTD
— 0x09 is PIND, if anyone cares (Port D input pin address)

* And the commands used in previous clip...

Mnemonics Operands Description Operation Flags #Clocks
Lo Ad, K Load Immediate Rd «— K Mona 1
ouT P. Ar Out Pord P«—Rr Nong 1
58I Pb Sat Bit in 'O Ragister (P b}« 1 MNone 2
CEI Pb Clear Bit in 'O Registar FO{P b) «— 0 MNone 2

Direct Assembly in Sketch

void setup()

1
asm('ldi\tr24, Ox12\n\t" "out\tOx0Oa, r24\n\t");

// could replace with asm('sbi\tOx0a,4\n\t");
¥

void loop()

{
asm(*'sbi\tOx0b, 4\n\t");

delay(250);
asm('cbi\tOx0b, 4\n\t");
delay(500);

}
e Use if you're really feeling black-belt...

— note use of tabs (\t), and each instruction ending (\n\t)
— can gang several instructions into same asm() command

— no advantage in this program over approach (in fact, far
less intelligible), but illustrates method (and actually works!)

Packing command into hex

a6: 82 el 1di r24, 0x12 - 18
a8: 8a b9 out Ox0a, r24 . 10
ac: 5c 9a sbi Ox0b, 4 . 11
ba: 5c 98 cbi Ox0b, 4 . 11

e The human-readable form gets packed into hex code

e Prescription varies by command, found in instruction set
reference (link from course website); for LDI:

Operation:
(i) Rd « K

Syntax: Operands: Program Counter:
(i) LDI Rd,K 16<d=<31,0<K <255 PC « PC + 1

16-bit Opcode:

1110 KEEE dddd EEFEK

— r24 =2 d = 24, which is 8 off minimum of 16, so dddd = 1000
— K=0x12 =0001 0010
— 11100001 1000 0010=E 182 > 82 E], asin line a6 above

More Examples

a8: 8a b9 out Ox0Oa, r24 ; 10
Operation:
(i) IVO({A) « Rr
Syntax: Operands: Program Counter:
(i) OUT A.Rr 0<r<31,0<A <63 PC « PC + 1

16-bit Opcode:

1011 1AATF rrrr ARDD

e OUT command
— r=24=0x18 =0001 1000, or 1 1000 splitto r rrrr
— A =0x0a =0000 1010, or 00 1010 split to AA AAAA
— so get 1011 1001 1000 1010=B9 8 A > 8A B9

One More Example

ac: 5c 9a sbi OxOb, 4 ; 11
Operation:
(i) VO(A.b) « 1
Syntax: Operands: Program Counter:
(i) SBI A,b D<A<31,0<bx<7 PC « PC + 1

16-bit Opcode:

1001 1010 ALAD Abbb

e SBI command
— A =0x0b = 0000 1011 - 0101 1 when split to AAAA A
— b=4=100
— so have 1001 1010 0101 1100=9A5C > 5C9A

Language Reference

#Clocks
Mnemonics Operands | Desecription Operation Flags #Clocks XMEGA
Arithmetic and Logic Instructions
ADD RAd, Rr Add without Carry Rd +« Rd+PAr ZCNVSH 1
ADC Rd, Ar Add with Carry Rd « PRd+PRArsC ZCMHNNMSH | 1
AW Ad, K Add Immediate to Word Ad +« RAd+1RAd+K ZCNVS 2
SUB Ad, Ar Subtract without Carry Ad +« PRd-Ar ZCNVSH 1
SUBI Hd, K Subfract Immediate Hd « Rd-K ZCHNVEH | 1
SBC Rd, RAr Subfract with Carry Ad « Ad-Ar-C ZCMNVSH 1
SBCI Ad, K Subfract Immediate with Camry Ad « PRAd-K-C ZCMNVSH 1
sw Ad, K Subtract Immediate from Word Ad+1:Ad « RAd+1:RAd-K ZCNVS 2
AND Rd, Ar Logical AND ARd +« PRde«Ar ZNVS 1
L

First portion of 3 page instruction set (119 cmds.)

— 29 arithmetic and logic; 38 branch; 20 data transfer; 28 bit

and bit-test; 4 MCU control
Flags store results from operation, like:

— was result zero (Z)?, was there a carry (C)?, result negative

(N)?, and more

Example from Instruction Reference
ADC - Add with Carry

Description:

Adds two registers and the contents of the C Flag and places the result in the destination register Rd.

Operation:
(i) Rd«< Rd+Rr+C

Syntax: Operands: Program Counter:
(i) ADC Rd,Rr 0=d=31,0=r=31 PC« PC + 1

16-bit Opcode:

0001 11rd dddd rrrr

Status Register (SREG) Boolean Formula:

I T H S v N Z C

- - — — — — — —

First half of page for add with carry
Note use of C status bit

ADC, Continued

Rd3e«Rr3+Rr3+R3+R3«Rd3
Set if there was a carry from bit 3; cleared otherwise

N @ V, For signed tests.

Rd7«Rr7«R7+Rd7«Rr7«R7

Set if two's complement overflow resulted from the operation; cleared otherwise.

R7
Set if MSB of the result is set; cleared otherwise.

R7+« BE «R5« R4 «R3 «R2 «R1 «R0
Set if the result is $00; cleared otherwise.

Rd7eRr7+Rr7sR7+R7+Rd7
Set if there was carry from the MSB of the result; cleared otherwise.

R (Result) equals Rd after the operation.

Example:

; Add R1:R0 to R3:R2
r2,r0 ; Add low byte
ri, rl ; Add with carry high byte

Words: 1 (2 bytes)
Cycles: 1

Phys 124: Lecture 11

29

delay(2000)
ac: 60
ae: a4
bO: 80
b2: 90
b4 : Oe

e Want to wait for 2000 ms

Example code: delay function

ed
e0
e0
e0
94 ac 00

Idi
Idi
Idi
Idi
call

r22, 0xDO
r23, 0x07
r24, 0x00
r2s5, 0x00
0x158

* Load registers 22..25 with 2000
— 0x224 0x216 7x28 208%2° = 2000

e Call program memory location 0x158

;, 208
. [
> 0
> 0

; Ox158 <delay>

— first store address of next instruction (Oxb8) in STACK
— set program counter (PC) to 0x158

— next instruction will be at program address 0x158

— return from routine will hit program at location Oxb8

Delay Function

e Has 81 lines of assembly code

— many instructions repeated in loops

— uses commands MOVW, IN, CLI, LDS, SBIS, RIMP, CPI,
BREQ, ADDIW, ADC, MOV, EOR, ADD, LDI, BRNE, SUB, SBC,
SUBI, SBCI, BRCS, CP, CPC, RET

— essentially loads a counter with how many milliseconds
— and another counter with 1000

— rifles through a microsecond (16 clock cycles),
decrementing microsecond counter (down from 1000)

— when 1k counter reaches zero, 1 ms elapsed, decrement
ms counter

— after each decrement, check if zero and return if so

Announcements

Project proposals due this Friday, 2/10
Tracker check-off, turn in code by 2/14 or 2/15
Will move to new lab schedule next week
Lectures will terminate today

“Midterm” set for Wed., 2/15

— will give example of some simple task you are to do in
Arduino, and you write down C-code on blank paper that
would successfully compile and perform the desired task

	Physics 124: Lecture 11
	Behind the C code (or sketch)
	Viewing assembly produced by Arduino
	AVR, Dude?
	avr-objdump (man page)
	Use .o or .elf?
	Example: Simple Blink program
	Compiled, in build directory
	simple_blink.cpp
	avr-objdump -d on .o file
	avr-objdump -S on .o file
	avr-objdump -d on .elf file
	avr-objdump -S on .elf file
	A look at .hex file
	Counting bytes
	Great, but what does it mean?
	Inserting Assembly Code into C Sketch
	Direct Port Manipulation
	Example: Hard-coded Outputs
	More Flexible Coding of Same
	Resulting Assembly Code
	What’s with addresses 0x0a and 0x0b?
	Direct Assembly in Sketch
	Packing command into hex
	More Examples
	One More Example
	Language Reference
	Example from Instruction Reference
	ADC, Continued
	Example code: delay function
	Delay Function
	Announcements

