
Physics 124: Lecture 11

Assembly Language and Arduino

Adapted from T. Murphy’s slides



Behind the C code (or sketch)

• C provides a somewhat human-readable interface
– but it gets compiled into machine instruction set
– ultimately just binary (or hex) instructions loaded into the 

ATMega program memory (flash)
– even so, each instruction can be expressed in human terms
– called “assembly language” or “machine code” 

• Assembly instruction set is very low level
– dealing with the processing of one data parcel (byte, usu.) 

at a time
– a C command may break out into a handful of machine 

instructions

2Phys 124: Lecture 11



Viewing assembly produced by Arduino
• Look within the Arduino install directory:

– On a Mac:
• /Applications/Arduino.app/Contents/Resources/Java/

– we looked before in hardware/arduino/ for code details
– in hardware/arduino/tools/avr/bin/ are some utilities

Phys 124: Lecture 11 3

RXTXcomm.jar lib/                  quaqua.jar
core.jar libquaqua.jnilib reference/
ecj.jar libquaqua64.jnilib    revisions.txt
examples/             libraries/            tools/
hardware/             librxtxSerial.jnilib
jna.jar pde.jar

avarice*        avr-gcc*        avr-gprof*    avr-project*  ice-insight*
avr-addr2line*  avr-gcc-3.4.6*  avr-help*     avr-ranlib*   kill-avarice*
avr-ar*         avr-gcc-4.3.2*  avr-info*     avr-readelf*  libusb-config*
avr-as*         avr-gcc-select* avr-ld*       avr-size*     make*
avr-c++*        avr-gccbug*     avr-man*      avr-strings*  simulavr*
avr-c++filt*    avr-gcov*       avr-nm*       avr-strip*    simulavr-disp*
avr-cpp*        avr-gdb*        avr-objcopy*  avrdude*      simulavr-vcd*
avr-g++*        avr-gdbtui*     avr-objdump*  ice-gdb*      start-avarice*



AVR, Dude?

• AVR(isc?) is an 8-bit architecture developed by Atmel
– http://en.wikipedia.org/wiki/Atmel_AVR
– used by ATMega chips, on which Arduino is based

• Note in particular avr-objdump, avrdude
– the latter mostly because it has a cool name (it can be 

used to shove machine code (.hex) onto chip) 
• DUDE means Downloader UploaDEr (a stretch)

• Running avr-objdump on .o or .elf files in your 
local Arduino/build/ directory disassembles code
– the -d flag produces straight code
– the -S flag intersperses with commented C-like code

Phys 124: Lecture 11 4

http://en.wikipedia.org/wiki/Atmel_AVR


avr-objdump (man page)
• avr-objdump - display information from object files.
• Options considered here:

– [-d|--disassemble]
– [-S|--source]

• avr-objdump displays  information  about  one  or  more 
object files.  The options control what particular 
information to display.  This  information is mostly useful 
to programmers who are working on the compilation 
tools, as opposed to programmers who just want their 
program to compile and work.

objfile...  are  the  object  files  to  be examined.  When 
you specify archives, objdump shows information on each 
of the member object files.

Phys 124: Lecture 11 5



Use .o or .elf?

• Can dump either stuff in the .o file or the .elf file
– the .o file contains just the pieces you programmed

• thus leaves out the code behind built-in functions

– the .elf file contains the rest of the ATMega interface
– so .o output will be smaller, but lack full context

Phys 124: Lecture 11 6



Example: Simple Blink program

• Look how small it is, when written in high-level 
human terms!

Phys 124: Lecture 11 7

const int LED=13;

void setup()
{
pinMode(LED,OUTPUT);

}

void loop()
{
digitalWrite(LED,HIGH);
delay(250);
digitalWrite(LED,LOW);
delay(500);

}



Compiled, in build directory
• Compilation produces following in IDE message box:

– Binary sketch size: 1,076 bytes (of a 30,720 byte maximum)
• Listing of build directory:

– note file size in bytes
– .d file is list of header files
– .eep is about EEPROM data
– .o and .elf are compiled
– .hex is what is sent to chip

• note that the ASCII representation is at least 2× larger than binary 
version (e.g., 9C takes 2 bytes to write in ASCII, 1 byte in memory)

Phys 124: Lecture 11 8

-rw-r--r-- 1 tmurphy tmurphy 239 Feb  3 08:42 simple_blink.cpp
-rw-r--r-- 1 tmurphy tmurphy 1062 Feb  3 08:42 simple_blink.cpp.d
-rw-r--r-- 1 tmurphy tmurphy 13 Feb  3 08:42 simple_blink.cpp.eep
-rwxr-xr-x 1 tmurphy tmurphy 14061 Feb  3 08:42 simple_blink.cpp.elf*
-rw-r--r-- 1 tmurphy tmurphy 3049 Feb  3 08:42 simple_blink.cpp.hex
-rw-r--r-- 1 tmurphy tmurphy 3892 Feb  3 08:42 simple_blink.cpp.o



simple_blink.cpp

• Basically what’s in the sketch, with some wrapping

Phys 124: Lecture 11 9

#include "Arduino.h"
void setup();
void loop();
const int LED=13;

void setup()
{
pinMode(LED,OUTPUT);

}

void loop()
{
digitalWrite(LED,HIGH);
delay(250);
digitalWrite(LED,LOW);
delay(500);

}



pgm hex                      cmd arguments                   ; comments

avr-objdump -d on .o file

• Just the start of the 32-line file
• Entries are:

– program memory address; hex command; assembly command, 
arguments, comments

Phys 124: Lecture 11 10

simple_blink.cpp.o:     file format elf32-avr

Disassembly of section .text.loop:

00000000 <loop>:
0:   8d e0           ldi r24, 0x0D       ; 13
2:   61 e0           ldi r22, 0x01       ; 1
4:   0e 94 00 00     call    0       ; 0x0 <loop>
8:   6a ef ldi r22, 0xFA       ; 250
a:   70 e0           ldi r23, 0x00       ; 0
c:   80 e0           ldi r24, 0x00       ; 0
e:   90 e0           ldi r25, 0x00       ; 0

10:   0e 94 00 00     call    0       ; 0x0 <loop>
14:   8d e0           ldi r24, 0x0D       ; 13
16:   60 e0           ldi r22, 0x00       ; 0
18:   0e 94 00 00     call    0       ; 0x0 <loop>



avr-objdump -S on .o file

• Now has C code interspersed; 49 lines in file
– but does not make sense on its own; call references wrong

Phys 124: Lecture 11 11

00000000 <loop>:
pinMode(LED,OUTPUT);

}

void loop()
{

digitalWrite(LED,HIGH);
0:   8d e0           ldi r24, 0x0D       ; 13
2:   61 e0           ldi r22, 0x01       ; 1
4:   0e 94 00 00     call    0       ; 0x0 <loop>

delay(250);
8:   6a ef ldi r22, 0xFA       ; 250
a:   70 e0           ldi r23, 0x00       ; 0
c:   80 e0           ldi r24, 0x00       ; 0
e:   90 e0           ldi r25, 0x00       ; 0

10:   0e 94 00 00     call    0       ; 0x0 <loop>
digitalWrite(LED,LOW);
14:   8d e0           ldi r24, 0x0D       ; 13
16:   60 e0           ldi r22, 0x00       ; 0
18:   0e 94 00 00     call    0       ; 0x0 <loop>



avr-objdump -d on .elf file

• Now loop starts at memory location (program 
counter) 100 (hex)
– and calls to other routines no longer just address 0
– note useful comments for writes and delays
– note also extensive use of registers r22, r24, etc.

Phys 124: Lecture 11 12

00000100 <loop>:
100:   8d e0           ldi r24, 0x0D       ; 13
102:   61 e0           ldi r22, 0x01       ; 1
104:   0e 94 b5 01     call    0x36a   ; 0x36a <digitalWrite>
108:   6a ef ldi r22, 0xFA       ; 250
10a:   70 e0           ldi r23, 0x00       ; 0
10c:   80 e0           ldi r24, 0x00       ; 0
10e:   90 e0           ldi r25, 0x00       ; 0
110:   0e 94 e2 00     call    0x1c4   ; 0x1c4 <delay>
114:   8d e0           ldi r24, 0x0D       ; 13
116:   60 e0           ldi r22, 0x00       ; 0
118:   0e 94 b5 01     call    0x36a   ; 0x36a <digitalWrite>



avr-objdump -S on .elf file

• Embedded C code
– note 500 delay is 1×256 + 244 (0x01F4)

Phys 124: Lecture 11 13

void loop()
{

digitalWrite(LED,HIGH);
100:   8d e0           ldi r24, 0x0D       ; 13
102:   61 e0           ldi r22, 0x01       ; 1
104:   0e 94 b5 01     call    0x36a   ; 0x36a <digitalWrite>
delay(250);

108:   6a ef ldi r22, 0xFA       ; 250
10a:   70 e0           ldi r23, 0x00       ; 0
10c:   80 e0           ldi r24, 0x00       ; 0
10e:   90 e0           ldi r25, 0x00       ; 0
110:   0e 94 e2 00     call    0x1c4   ; 0x1c4 <delay>
digitalWrite(LED,LOW);

114:   8d e0           ldi r24, 0x0D       ; 13
116:   60 e0           ldi r22, 0x00       ; 0
118:   0e 94 b5 01     call    0x36a   ; 0x36a <digitalWrite>
delay(500);

11c:   64 ef ldi r22, 0xF4       ; 244
11e:   71 e0           ldi r23, 0x01       ; 1



A look at .hex file

• Snippet of ASCII .hex file around sections displayed on 
previous four slides
– first: how many bytes in line (2 hex characters/byte)
– next, program counter for 1st instr. in line: 0100, 0110, 0120
– then 00, then, instructions, like: 8DE0, 61E0, 0E94B501

• just contents of assembly, in hex terms
– checksum at end

Phys 124: Lecture 11 14

:100100008DE061E00E94B5016AEF70E080E090E070
:100110000E94E2008DE060E00E94B50164EF71E0B2
:1001200080E090E00E94E20008958DE061E00E948E

100:   8d e0 ldi r24, 0x0D       ; 13
102:   61 e0 ldi r22, 0x01       ; 1
104:   0e 94 b5 01 call    0x36a   ; 0x36a <digitalWrite>
108:   6a ef ldi r22, 0xFA       ; 250
10a:   70 e0           ldi r23, 0x00       ; 0
10c:   80 e0           ldi r24, 0x00       ; 0
10e:   90 e0           ldi r25, 0x00       ; 0
110:   0e 94 e2 00     call    0x1c4   ; 0x1c4 <delay>



Counting bytes
• The end of the hex file looks like:

• And the corresponding assembly:

– last 4 bytes on penultimate line; note 04 leader (4 bytes)
• normal (full) line has 16 bytes (hex 0x10)
• 67 full-size lines is 1072 bytes, plus four at end  1076 bytes
• Recall: Binary sketch size: 1,076 bytes (of a 30,720 byte maximum)

• Last line in hex file likely a standard ending sequence
Phys 124: Lecture 11 15

:10042000D0E00E9480002097E1F30E940000F9CF05
:04043000F894FFCF6E
:00000001FF

42a:   0e 94 00 00     call    0       ; 0x0 <__vectors>
42e:   f9 cf rjmp .-14            ; 0x422 <main+0x10>

00000430 <_exit>:
430:   f8 94           cli

00000432 <__stop_program>:
432:   ff cf rjmp .-2             ; 0x432 <__stop_program>



Great, but what does it mean?
• We’ve seen some patterns, and seen assembly code

– but what do we make of it?
• See Chapter 32 of ATMega datasheet, pp. 537–539

– or http://en.wikipedia.org/wiki/Atmel_AVR_instruction_set
• But won’t learn without a lot of effort
• Some examples:

– in the copied code, we really only saw LDI and CALL

– LDI puts contents of byte K (2nd arg.) into register Rd (1st arg.)
– CALL loads K (only arg.) into PC (program counter)

• so next operation takes place there; saves place for call origin
– note info on how many clock cycles are taken

Phys 124: Lecture 11 16

http://en.wikipedia.org/wiki/Atmel_AVR_instruction_set


Inserting Assembly Code into C Sketch
• The Arduino interface provides a means to do this

– via asm() command
• Can send digital values directly to port
• Why would you do this?

– consider that digitalWrite() takes > 60 clock cycles
• maybe you need faster action
• maybe you need several pins to come on simultaneously

– might need delays shorter than 1 µs
• insert nop (no operation) commands, taking 1 cycle each

– might need to squeeze code to fit into flash memory
• direct low-level control without bells & whistles is more compact

• Why wouldn’t you do this?
– lose portability, harder to understand code, mistake prone

Phys 124: Lecture 11 17



Direct Port Manipulation

• Can actually do this without going all the way to 
assembly language
– see http://arduino.cc/en/Reference/PortManipulation
– PORTD maps to pins 0−7 on Arduino
– PORTB (0:5) maps to pins 8−13 on Arduino
– PORTC (0:5) maps to analog pins 0−5
– Each (D/B/C) has three registers to access; e.g., for port D:

• DDRD: direction: 11010010 has pins 1, 4, 6, 7 as output
– must keep pin 0 as input, pin 1 as output if Serial is used

• PORTD: read/write values (can probe PORTD as well as set it)
• PIND: read values (cannot set it)

– So DDR replaces pinMode()
– writing PORTD = B01010010 puts pins 6, 4, 1 HIGH at once

Phys 124: Lecture 11 18

http://arduino.cc/en/Reference/PortManipulation


Example: Hard-coded Outputs

• Serial-friendly, and sets pin 4 (D:4) as output
• Uses bitwise logic AND, OR, and NOT to set pin values

– virtue of this is that it leaves other pin values undisturbed

• Sketch compiles to 676 bytes
– compare to 1076 using Arduino commands

Phys 124: Lecture 11 19

void setup()
{
DDRD |= B00010010;

}

void loop()
{
PORTD |= B00010000;
delay(250);
PORTD &= B11101111;
delay(500);

}



More Flexible Coding of Same

• Again sets port D to be Serial-friendly and pin 4 as output
• Still 676 bytes (no penalty for flexibility)

– compiles to same actions, but now easier to modify
– compiles to 474 bytes without delay functions
– adding back pinMode() 896 bytes
– then restoring digitalWrite() 1076 bytes

Phys 124: Lecture 11 20

const int OUTBIT=4;

void setup()
{

DDRD = B00000010 | (1 << OUTBIT);
}

void loop()
{

PORTD |= (1 << OUTBIT);
delay(250);
PORTD &= ~(1 << OUTBIT);
delay(500);

}



Resulting Assembly Code

• Tiny commands 
– load (LDI) B00010010 (0x12) into r24 (register 24)
– write r24 out (OUT) to port 0x0a (see ATMega register summary)
– set 4th bit (SBI) of register 0x0b (write HIGH to that pin)
– clear 4th bit (CBI) of register 0x0b (write LOW to that pin) 

Phys 124: Lecture 11 21

DDRD = B00000010 | (1 << OUTPIN);
a6:   82 e1           ldi r24, 0x12       ; 18
a8:   8a b9           out     0x0a, r24       ; 10

PORTD |= (1 << OUTPIN);
ac:   5c 9a           sbi 0x0b, 4 ; 11

PORTD &= ~(1 << OUTPIN);
ba:   5c 98           cbi 0x0b, 4 ; 11

0001 0010



What’s with addresses 0x0a and 0x0b?

• From the ATMega short datasheet
– we see 0x0a is DDRD
– and 0x0b is PORTD
– 0x09 is PIND, if anyone cares (Port D input pin address)

• And the commands used in previous clip…

Phys 124: Lecture 11 22



Direct Assembly in Sketch

• Use if you’re really feeling black-belt…
– note use of tabs (\t), and each instruction ending (\n\t)
– can gang several instructions into same asm() command
– no advantage in this program over PORTD approach (in fact, far 

less intelligible), but illustrates method (and actually works!)

Phys 124: Lecture 11 23

void setup()
{
asm("ldi\tr24, 0x12\n\t" "out\t0x0a, r24\n\t");
// could replace with asm("sbi\t0x0a,4\n\t");

}

void loop()
{
asm("sbi\t0x0b, 4\n\t");
delay(250);
asm("cbi\t0x0b, 4\n\t");
delay(500);

}



Packing command into hex

• The human-readable form gets packed into hex code
• Prescription varies by command, found in instruction set 

reference (link from course website); for LDI:

– r24  d = 24, which is 8 off minimum of 16, so dddd 1000
– K = 0x12 = 0001 0010
– 1110 0001 1000 0010 = E 1 8 2  82 E1, as in line a6 above

Phys 124: Lecture 11 24

a6:   82 e1           ldi r24, 0x12       ; 18
a8:   8a b9           out     0x0a, r24       ; 10
ac:   5c 9a           sbi 0x0b, 4         ; 11
ba:   5c 98           cbi 0x0b, 4         ; 11



More Examples

• OUT command
– r = 24 = 0x18 = 0001 1000, or 1 1000 split to r rrrr
– A = 0x0a = 0000 1010, or 00 1010 split to AA AAAA
– so get 1011 1001 1000 1010 = B 9 8 A  8A B9

Phys 124: Lecture 11 25

a8:   8a b9           out     0x0a, r24       ; 10



One More Example

• SBI command
– A = 0x0b = 0000 1011  0101 1 when split to AAAA A
– b = 4 = 100
– so have 1001 1010 0101 1100 = 9 A 5 C  5C 9A

Phys 124: Lecture 11 26

ac:   5c 9a           sbi 0x0b, 4         ; 11



Language Reference

• First portion of 3 page instruction set (119 cmds.)
– 29 arithmetic and logic; 38 branch; 20 data transfer; 28 bit 

and bit-test; 4 MCU control 
• Flags store results from operation, like:

– was result zero (Z)?, was there a carry (C)?, result negative 
(N)?, and more

Phys 124: Lecture 11 27



Example from Instruction Reference

Phys 124: Lecture 11 28

First half of page for add with carry
Note use of C status bit



ADC, Continued

Phys 124: Lecture 11 29



Example code: delay function

• Want to wait for 2000 ms
• Load registers 22..25 with 2000

– 0×224 0×216 7×28 208×20 = 2000

• Call program memory location 0x158
– first store address of next instruction (0xb8) in STACK
– set program counter (PC) to 0x158
– next instruction will be at program address 0x158
– return from routine will hit program at location 0xb8

Phys 124: Lecture 11 30

delay(2000);
ac:   60 ed ldi r22, 0xD0       ; 208
ae:   77 e0           ldi r23, 0x07       ; 7
b0:   80 e0           ldi r24, 0x00       ; 0
b2:   90 e0           ldi r25, 0x00       ; 0
b4:   0e 94 ac 00     call    0x158   ; 0x158 <delay>



Delay Function

• Has 81 lines of assembly code
– many instructions repeated in loops
– uses commands MOVW, IN, CLI, LDS, SBIS, RJMP, CPI, 

BREQ, ADDIW, ADC, MOV, EOR, ADD, LDI, BRNE, SUB, SBC, 
SUBI, SBCI, BRCS, CP, CPC, RET

– essentially loads a counter with how many milliseconds
– and another counter with 1000
– rifles through a microsecond (16 clock cycles), 

decrementing microsecond counter (down from 1000)
– when 1k counter reaches zero, 1 ms elapsed, decrement 

ms counter
– after each decrement, check if zero and return if so

Phys 124: Lecture 11 31



Announcements

• Project proposals due this Friday, 2/10
• Tracker check-off, turn in code by 2/14 or 2/15
• Will move to new lab schedule next week
• Lectures will terminate today
• “Midterm” set for Wed., 2/15

– will give example of some simple task you are to do in 
Arduino, and you write down C-code on blank paper that 
would successfully compile and perform the desired task

Phys 124: Lecture 11 32


	Physics 124: Lecture 11
	Behind the C code (or sketch)
	Viewing assembly produced by Arduino
	AVR, Dude?
	avr-objdump (man page)
	Use .o or .elf?
	Example: Simple Blink program
	Compiled, in build directory
	simple_blink.cpp
	avr-objdump -d on .o file
	avr-objdump -S on .o file
	avr-objdump -d on .elf file
	avr-objdump -S on .elf file
	A look at .hex file
	Counting bytes
	Great, but what does it mean?
	Inserting Assembly Code into C Sketch
	Direct Port Manipulation
	Example: Hard-coded Outputs
	More Flexible Coding of Same
	Resulting Assembly Code
	What’s with addresses 0x0a and 0x0b?
	Direct Assembly in Sketch
	Packing command into hex
	More Examples
	One More Example
	Language Reference
	Example from Instruction Reference
	ADC, Continued
	Example code: delay function
	Delay Function
	Announcements

